Open main menu

Euryarchaeota (Greek for "broad old quality") is a phylum of archaea.[3] It is one two phyla of archaea, the other being crenarchaeota.[4] Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines, halobacteria, which survive extreme concentrations of salt, and some extremely thermophilic aerobes and anaerobes, which generally live at temperatures between 41 and 122º C. They are separated from the other archaeans based mainly on rRNA sequences and their unique DNA polymerase.[5]

Euryarchaeota
Halobacteria.jpg
Halobacterium sp. strain NRC-1, each cell about 5 µm in length.
Scientific classification
Domain:
Kingdom:
"Euryarchaeota"

Phylum:
"Euryarchaeota"

Garrity and Holt 2002
Classes[2]
Synonyms
  • Euryarchaeota Woese et al. 1990
  • Euryarchaeota Garrity and Holt 2002
  • not Euryarchaeota Cavalier-Smith 2002

Contents

DescriptionEdit

The Euryarchaeota are diverse in appearance and metabolic properties. The phylum contains organisms of a variety of shapes, including both rods and cocci. Euryarchaeota may appear either gram-positive or gram-negative depending on whether pseudomurein is present in the cell wall.[6] Euryarchaeota also demonstrate diverse lifestyles, including methanogens, halophiles, sulfate-reducers, and extreme thermophiles in each.[6] Others live in the ocean, suspended with plankton and bacteria. Although these marine euryarchaeota are difficult to culture and study in a lab, genomic sequencing suggests that they are motile heterotrophs.[7]

Though it was previously thought that euryarchaeota only lived in extreme environments (in terms of temperature, salt content and/or pH), a paper by Korzhenkov et al published in January 2019 showed that euryarchaeota also live in moderate environments, such as low-temperature acidic environments. In some cases, euryarchaeota outnumbered the bacteria present.[8] Euryarchaeota have also been found in other moderate environments such as water springs, marshlands, soil and rhizospheres.[4] Some euryarchaeota are highly adaptable; an order called Halobacteriales are usually found in extremely salty and sulfur-rich environments but can also grow in salt concentrations as low as that of seawater 2.5%.[4] In rhizospheres, the presence of euryarchaeota seems to be dependent on that of mycorrhizal fungi; a higher fungal population was correlated with higher euryarchaeotal frequency and diversity, while absence of mycorrihizal fungi was correlated with absence of euryarchaeota.[4]


PhylogenyEdit

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[9] and National Center for Biotechnology Information (NCBI)[10] and the phylogeny is based on 16S rRNA-based LTP release 121 by 'The All-Species Living Tree' Project.[11]


?Aciduliprofundum booneiReysenbach et al. 2006

?Nanohaloarchaea

Methanopyrus kandleri

Methanococcales

Eurythermea

Thermococcaceae

Thermoplasmata

Neobacteria

Methanobacteriales

Archaeoglobaceae

Halomebacteria

Methanomicrobia

Halobacteriaceae

Notes:
♠ Strain found at the National Center for Biotechnology Information (NCBI) but not listed in the List of Prokaryotic names with Standing in Nomenclature (LPSN)

See alsoEdit

ReferencesEdit

  1. ^ Woese CR, Kandler O, Wheelis ML (June 1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proceedings of the National Academy of Sciences of the United States of America. 87 (12): 4576–9. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159. PMID 2112744.
  2. ^ Castelle CJ, Banfield JF. (2018). "Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life". Cell. 172 (6): 1181–1197. doi:10.1016/j.cell.2018.02.016. PMID 29522741.CS1 maint: Uses authors parameter (link)
  3. ^ Hogan CM (2010). E. Monosson, C. Cleveland (eds.). "Archaea". Encyclopedia of Earth. National Council for Science and the Environment. Retrieved 18 August 2017.
  4. ^ a b c d Bomberg M, Timonen S (October 2007). "Distribution of cren- and euryarchaeota in scots pine mycorrhizospheres and boreal forest humus". Microbial Ecology. 54 (3): 406–16. doi:10.1007/s00248-007-9232-3. PMID 17334967.
  5. ^ Lincoln SA, Wai B, Eppley JM, Church MJ, Summons RE, DeLong EF (July 2014). "Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean". Proceedings of the National Academy of Sciences of the United States of America. 111 (27): 9858–63. Bibcode:2014PNAS..111.9858L. doi:10.1073/pnas.1409439111. PMC 4103328. PMID 24946804.
  6. ^ a b Garrity GM, Holt JG (2015). "Euryarchaeota phy. nov.". In Whitman WB (ed.). Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons. doi:10.1002/9781118960608. ISBN 9781118960608.
  7. ^ Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV (February 2012). "Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota". Science. 335 (6068): 587–90. Bibcode:2012Sci...335..587I. doi:10.1126/science.1212665. PMID 22301318.
  8. ^ Korzhenkov AA, Toshchakov SV, Bargiela R, Gibbard H, Ferrer M, Teplyuk AV, Jones DL, Kublanov IV, Golyshin PN, Golyshina OV (January 2019). "Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity". Microbiome. 7 (1): 11. doi:10.1186/s40168-019-0623-8. PMC 6350386. PMID 30691532.
  9. ^ Euzéby JP. "Euryarchaeota". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2017-08-09.
  10. ^ Sayers; et al. "Euryarchaeota". Taxonomy Browser. National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2017-08-09.
  11. ^ 'The All-Species Living Tree' Project."16S rRNA-based LTP release 121 (full tree)" (PDF). Silva Comprehensive Ribosomal RNA Database. Archived from the original (PDF) on 2015-09-23. Retrieved 2017-08-09.

Further readingEdit

  • Cavalier-Smith T (January 2002). "The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification". International Journal of Systematic and Evolutionary Microbiology. 52 (Pt 1): 7–76. doi:10.1099/00207713-52-1-7. PMID 11837318.
  • Woese CR, Gupta R, Hahn CM, Zillig W, Tu J (1984). "The phylogenetic relationships of three sulfur dependent archaebacteria". Systematic and Applied Microbiology. 5: 97–105. doi:10.1016/S0723-2020(84)80054-5. PMID 11541975.
  • Garrity GM, Holt JG (2001). "Phylum AII. Euryarchaeota phy. nov.". In DR Boone, RW Castenholz (eds.). Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the deeply branching and phototrophic Bacteria (2nd ed.). New York: Springer Verlag. p. 169. ISBN 978-0-387-98771-2.

External linksEdit