Elliptic gamma function

In mathematics, the elliptic gamma function is a generalization of the q-gamma function, which is itself the q-analog of the ordinary gamma function. It is closely related to a function studied by Jackson (1905), and can be expressed in terms of the triple gamma function. It is given by

${\displaystyle \Gamma (z;p,q)=\prod _{m=0}^{\infty }\prod _{n=0}^{\infty }{\frac {1-p^{m+1}q^{n+1}/z}{1-p^{m}q^{n}z}}.}$

It obeys several identities:

${\displaystyle \Gamma (z;p,q)={\frac {1}{\Gamma (pq/z;p,q)}}\,}$
${\displaystyle \Gamma (pz;p,q)=\theta (z;q)\Gamma (z;p,q)\,}$

and

${\displaystyle \Gamma (qz;p,q)=\theta (z;p)\Gamma (z;p,q)\,}$

where θ is the q-theta function.

When ${\displaystyle p=0}$, it essentially reduces to the infinite q-Pochhammer symbol:

${\displaystyle \Gamma (z;0,q)={\frac {1}{(z;q)_{\infty }}}.}$

Multiplication Formula

Define

${\displaystyle {\tilde {\Gamma }}(z;p,q):={\frac {(q;q)_{\infty }}{(p;p)_{\infty }}}(\theta (q;p))^{1-z}\prod _{m=0}^{\infty }\prod _{n=0}^{\infty }{\frac {1-p^{m+1}q^{n+1-z}}{1-p^{m}q^{n+z}}}.}$

Then the following formula holds with ${\displaystyle r=q^{n}}$  (Felder & Varchenko (2003)).

${\displaystyle {\tilde {\Gamma }}(nz;p,q){\tilde {\Gamma }}(1/n;p,r){\tilde {\Gamma }}(2/n;p,r)\cdots {\tilde {\Gamma }}((n-1)/n;p,r)=\left({\frac {\theta (r;p)}{\theta (q;p)}}\right)^{nz-1}{\tilde {\Gamma }}(z;p,r){\tilde {\Gamma }}(z+1/n;p,r)\cdots {\tilde {\Gamma }}(z+(n-1)/n;p,r).}$

References

• Jackson, F. H. (1905), "The Basic Gamma-Function and the Elliptic Functions", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, The Royal Society, 76 (508): 127–144, doi:10.1098/rspa.1905.0011, ISSN 0950-1207, JSTOR 92601
• Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
• Ruijsenaars, S. N. M. (1997), "First order analytic difference equations and integrable quantum systems", Journal of Mathematical Physics, 38 (2): 1069–1146, doi:10.1063/1.531809, ISSN 0022-2488, MR 1434226