Corbicula fluminea

Corbicula fluminea is a species of freshwater clam native to eastern Asia which has become a successful invasive species throughout North America, South America, and Europe.[1] C. fluminea is commonly known in the west as the Asian clam or Asiatic clam. In Southeast Asia, C. fluminea is known as the golden clam, prosperity clam, or good luck clam.

Corbicula fluminea
Corbicula fluminea.jpg
Corbicula fluminea
Scientific classification edit
Kingdom: Animalia
Phylum: Mollusca
Class: Bivalvia
Subclass: Heterodonta
Order: Venerida
Superfamily: Cyrenoidea
Family: Cyrenidae
Genus: Corbicula
C. fluminea
Binomial name
Corbicula fluminea

Tellina fluminea O. F. Müller, 1774 (original combination)


Corbicula have had global success as an aquatic invasive species, having been introduced to a novel range including South America,[2] North America and Europe. Human industrial activity, such as transport of larvae via ballast water in container ships, has been noted in the literature as a chief invasion vector.[3] A market exists for Asian clams for human consumption in Japan, China, and other countries in the region.[3] According to the United States Geological Survey, C. fluminea is likely to continue to expand its North American range until it reaches the maximum extent of its low temperature tolerance.[4] The periostracum of the shell is normally yellow-green, with concentric growth rings of the prismatic layer visible through the proteinous outer layer. The periostracum can flake, allowing the white prismatic layer to show through. The shells exhibit a light purple nacre on the inside.

Life CycleEdit

Right after reaching maturity, these clams produce eggs, followed by sperm. Throughout adult life, Corbicula is a self-fertile simultaneous hermaphrodite which can broadcast spawn up to 570 mucoid larvae per day per individual, and more than 68,000 per year per individual.[5] Larvae are ~200 microns in length when discharged from an adult and dispersed through water until becoming sessile adults.[5] Adults can reach a length of about 5 cm.


Corbicula fluminea is an active suspension feeder, and in the process of feeding by pumping water through its body (as well as feeding on interstitial sedimentary material via pedal feeding when suspended grazing items are limited).[6] They feed primarily on phytoplankton (algae), which they actively filter out the water, but may pedal feed on organic matter in the sandy or muddy bottoms of streams, lakes, or canals where the clam establishes a population.[1]


As a native speciesEdit

This clam originally occurs in freshwater environments of Eastern Asia, including Russia, Thailand, the Philippines, China, Taiwan, Korea, and Japan. C. fluminea also occurs naturally in freshwater environments of Africa.[7]

As an invasive speciesEdit

Many coastal rivers with a heavy industrial shipping presence in the invaded range of C. fluminea sustain Asian clam populations.[3] Various non-indigenous populations of C. fluminea include:

Means of DispersalEdit

Human VectorsEdit

Human activities are the chief reason for the wide dispersal of C. fluminea as an invasive aquatic organism.[3] There is some evidence suggesting that Asian clams followed immigrating Asian communities to North America circa 1924 as a food source.[3] C. fluminea, along with other exotic bivalve larvae, may be transported via ballast water to novel ecosystems and establish populations.[3] The spread of Asian clams has been further exacerbated by other human activities such as the shellfish trade and accidental overland transport by recreational boaters bringing the clam into interior freshwater systems.[3]

Life History AdvantagesEdit

C. fluminea enjoys several physiological capabilities which are advantageous in promoting its invasion of novel lentic/lotic environments including:

  • Rapid individual growth rate
  • Short time to reach sexual maturity
  • Short lifespan paired with high fecundity
  • Fast rate of water filtration for suspension feeding
  • Ability to broadcast gametes over a broad area by utilizing water flow (in rivers)
  • Tolerance of a wide variety of substrate/habitat types[23]

Corbicula fluminea is a self-fertilizing, simultaneous hermaphrodite which can asexually produce internally-brooded, semi-buoyant planktonic larvae when spermiogenesis is induced at temperatures above 10°C.[5] This allows C. fluminea to colonize novel habitats at an advanced rate.[23]

Habitat AssociationEdit

Studies on which abiotic habitat characteristics are most strongly associated with Asian clam population abundance have produced varying results. Brazilian habitats have been found to have support the largest abundances of invasive Corbicula spp. in areas with coarser dominant sediment fractions, while negatively correlated with increasing levels of organic matter.[24] Others studies have shown abiotic habitat characteristics such as water redox potential, inorganic nutrient content, hardness, and organic matter content in tandem with the amount of very course sand combine to explain 59.3% of Corbicula population habitat association via statistical tests.[21] Asian clam invasions seem to be limited by elevation (88% of the invaded range is below 500m elevation[1]), latitude (90% lies between latitudes 30°and 55°[1]) as well as the minimum winter temperature (-10°C) of the ecosystem.[1]

Impacts on Invaded EcosystemsEdit

C. fluminea reworks the sediments it resides on through the process of bioturbation.[6] Asian clams are considered biodiffusors similar to marine clam species due to their observed bioturbation activity which may negatively affect biogeochemical affect other members of the benthic community in invaded areas.[6]

Corbicula has also been shown to profoundly influence community dynamics within the macrobenthos of invaded systems.[25] Corbicula has been shown to remove as much as 70% of phytoplankton biomass in reaches of invaded rivers with a robust clam population.[26] The clam has also been reported as causing a decline of dissolved oxygen in the water of the same river system with wide ranging second-order effects.[26]

The primary economic and social impact of the invasion of C. fluminea has been billions of dollars in costs associated with clogged plumbing and, heat exchangers, or other human-created infrastructure.[27] Ecologically, C. fluminea contributes to declines and replacement of highly vulnerable, already threatened native clams.[28]

Global Invasion PatternEdit

The first recorded instance of Corbicula presence in the scientific literature in the Western Hemisphere was of its introduction into British Columbia circa 1924, followed by a spread throughout the Pacific Northwest and across the American south through South America. Invasions in Europe and Central America were more recent, first appearing in Caribbean countries in 1998.[1]


They have been blamed for algal blooms and concerns exist they will outcompete and displace native species such as the montane pea clam (Pisidium spp.) and the ramshorn snail (Planorbidae).Efforts are underway at Lake Tahoe to smother the clams on the bottom with rubber mats.[29] In August 2020 routine inspections in Wyoming found several watercraft to be heavily infested including one with C. fluminea.[30][31] On October 16 2020 the Montana Department of Fish, Wildlife and Parks recommended that Lake Elmo - in Billings - be drained to dry out and freeze to death the C. fluminea infestation there.[32][33]


Corbicula fluminea vs Corbicula fluminalis

Corbicula fluminea is a species of freshwater clam, an aquatic bivalve mollusk in the family Cyrenidae.[34] C. fluminea is often confused with Corbicula fluminalis due to the two species' similar color and texture. Two species may be present in some introduced populations: C. fluminea and C. fluminalis.[35] The names themselves are similar in the literature (e.g. by being called "Corbicula fluminata").

The ratio of width and height in C. fluminea is on average 1.1. In C. fluminalis it is smaller (0.97); still, there is much variation and considerable overlap in shape. Most easily, they can be distinguished by the number of ribs on the shell; C. fluminea has 7 to 14 ribs per cm, C. fluminalis 13 to 28.[36] This character is already clearly recognizable (albeit only by direct comparison) in very small (5 mm diameter) specimens. In addition, when viewed from the ventral side (looking at the opening between the shells), C. fluminalis is rounder, almost heart-shaped, while C. fluminea has a slightly flatter shape like a teardrop with a notched broad end. Small specimens of C. fluminalis are almost spherical, while those of C. fluminea are decidedly flattened. All these differences except the rib number are a consequence of C. fluminalis having a markedly more swollen, pointed and protruding umbo.

See alsoEdit


  1. ^ a b c d e f g Crespo, Daniel; Dolbeth, Marina; Leston, Sara; Sousa, Ronaldo; Pardal, Miguel Ângelo (July 2015). "Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability". Biological Invasions. 17 (7): 2087–2101. doi:10.1007/s10530-015-0862-y. hdl:1822/49103. ISSN 1387-3547. S2CID 16548008.
  2. ^ Ituarte, C., 1981. Primera noticia acerca de la introducción de pelecípodos asiáticos en el área rioplatense (Mollusca: Corbiculidae). Neotropica 27 (77): 78-83
  3. ^ a b c d e f g h Karatayev, Alexander; et al. (2007). "Changes in global economies and trade: the potential spread of exotic freshwater bivalves". Biological Invasions. 9 (2): 161–180. doi:10.1007/s10530-006-9013-9. S2CID 40258885.
  4. ^ USGS
  5. ^ a b c McMahon, R.F. (1999) Invasive Characteristics of the Freshwater Bivalve Corbicula fluminea. In R. Claudi & J.H. Leach (Eds.), Nonindigenous Freshwater Organisms: Vectors, Biology, and Impacts (pp. 315-343).
  6. ^ a b c Majdi, Nabil; Bardon, Léa; Gilbert, Franck (July 2014). "Quantification of sediment reworking by the Asiatic clam Corbicula fluminea Müller, 1774" (PDF). Hydrobiologia. 732 (1): 85–92. doi:10.1007/s10750-014-1849-x. ISSN 0018-8158. S2CID 17503836.
  7. ^ USGS (2001): Nonindigenous species information bulletin: Asian clam, Corbicula fluminea (Müller, 1774) (Mollusca: Corbiculidae). PDF fulltext
  8. ^ Vázquez A. A. & Perera S. (2010). "Endemic Freshwater molluscs of Cuba and their conservation status". Tropical Conservation Science 3(2): 190-199. HTM, PDF.
  9. ^ a b Darrigran, G. and Damborenea, C. La almeja de agua dulce Corbicula fluminea (Müller, 1t74). In: Penchaszadeh, P.E. (Ed.), Invasores. Invertebrados exóticos en el Río de La Plata y región marina aledaña, Eudeba, Buenos Aires, pp. 133-177.
  10. ^ Cazzaniga, N. J. 1997. Asiatic Clam, Corbicula fluminea, Reaching Patagonia (Argentina). Journal of Freshwater Ecology 12(4):629-630.
  11. ^ Cazzaniga, N. J., y Pérez, C. (1999). Asiatic clam, Corbicula fluminea, in northwestern Patagonia (Argentina). Journal of Freshwater Ecology, 14 (4): 551-552
  12. ^ Archuby, F.; Macchi, P. y Darrigran, G., 2013. Corbicula fluminea (Muller 1774) (Corbiculidae) en el Alto Valle del Río Negro. I Congreso Argentino de Malacología, UNLP, La Plata.
  13. ^ Martítnez E, Rafael. 1987: Corbicula manilensis molusco introducido en Venezuela. Acta Científica Venezolana 38:384-385
  14. ^ Ojasti, Juhani., González Jiménez, Eduardo, Szeplaki Otahola, Eduardo. y García Román, Luis B. 2001: Informe sobre las especies exótica en Venezuela. Ministerio del Ambiente y de los Recursos Naturales Caracas. 207p. ISBN 980-04-1254-9
  15. ^ Lasso, Carlos A., Martínez E, Rafael, Capelo, Juan Carlos., Morales Betancourt, Mónica y Sánchez- Maya, Alejandro. 2009: Lista de los moluscos (Gastropodos_Bivalvia) dulceacuícolas y estuarinos de la cuenca del Orinoco (Venezuela). Biota Colombiana, 10(1 -2):63-74.
  16. ^ Jueg, U. & Zettler, M.L. (2004): Die Molluskenfauna der Elbe in Mecklenburg-Vorpommern mit Erstnachweis der Grobgerippten Körbchenmuschel Corbicula fluminea (O. F. Müller 1756). Mitteilungen der NGM 4(1): 85-89. [in German] PDF fulltext Archived 2007-09-27 at the Wayback Machine
  17. ^ Hayden, B. and Caffrey, J.M. 2013. First recording of the Asian Clam (Corbicula fluminea (Müller, 1774)) from the River Shannon, with preliminary notes on population size and class distribution. Ir. Nat. J. 32: 29 - 31.
  18. ^ Beran L. (2000) "First record of Corbicula fluminea (Mollusca: Bivalvia) in the Czech Republic". Acta Societatis Zoologicae Bohemicae 64: 1-2.
  19. ^ a b (in Czech) Horsák M., Juřičková L., Beran L., Čejka T. & Dvořák L. (2010). "Komentovaný seznam měkkýšů zjištěných ve volné přírodě České a Slovenské republiky. [Annotated list of mollusc species recorded outdoors in the Czech and Slovak Republics]". Malacologica Bohemoslovaca, Suppl. 1: 1-37. PDF.
  20. ^ Beran L. (2006). Spreading expansion of Corbicula fluminea (Mollusca: Bivalvia) in the Czech Republic. – Heldia 6 5/6: 187-192.
  21. ^ a b Sousa, Ronaldo; Rufino, Marta; Gaspar, Miguel; Antunes, Carlos; Guilhermino, Lúcia (January 2008). "Abiotic impacts on spatial and temporal distribution ofCorbicula fluminea (Müller, 1774) in the River Minho estuary, Portugal". Aquatic Conservation: Marine and Freshwater Ecosystems. 18 (1): 98–110. doi:10.1002/aqc.838.
  22. ^ a b "Invasive clam discovered by Sherburne County youth". UMN Extension. 2020-11-09. Retrieved 2020-11-11.
  23. ^ a b Gomes C, Sousa R, Mendes T, Borges R, Vilares P, Vasconcelos V, et al. (2016) Low Genetic Diversity and High Invasion Success of Corbicula fluminea (Bivalvia, Corbiculidae) (Müller, 1774) in Portugal. PLoS ONE 11(7):e0158108. doi:10.1371/journal.pone.0158108
  24. ^ Silveira, T. C. L.; Gama, A. M. S.; Alves, T. P.; Fontoura, N. F. (2016-04-19). "Modeling habitat suitability of the invasive clam Corbicula fluminea in a Neotropical shallow lagoon, southern Brazil". Brazilian Journal of Biology. 76 (3): 718–725. doi:10.1590/1519-6984.01915. ISSN 1678-4375. PMID 27097092.
  25. ^ Ilarri, M. I.; Souza, A. T.; Antunes, C.; Guilhermino, L.; Sousa, R. (2014-04-20). "Influence of the invasive Asian clam Corbicula fluminea (Bivalvia: Corbiculidae) on estuarine epibenthic assemblages". Estuarine, Coastal and Shelf Science. 143: 12–19. Bibcode:2014ECSS..143...12I. doi:10.1016/j.ecss.2014.03.017. hdl:1822/31318. ISSN 0272-7714.
  26. ^ a b Pigneur, Lise-Marie; Falisse, Elodie; Roland, Kathleen; Everbecq, Etienne; Deliège, Jean-François; Smitz, Joseph S.; Van Doninck, Karine; Descy, Jean-Pierre (March 2014). "Impact of invasive Asian clams, Corbicula spp., on a large river ecosystem". Freshwater Biology. 59 (3): 573–583. doi:10.1111/fwb.12286.
  27. ^ Pimentel, D., Zuniga, R. & Morrison, D. (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological economics 52: 273-288.
  28. ^
  29. ^ "". Archived from the original on 2014-07-14. Retrieved 2014-07-07. External link in |title= (help)
  30. ^ "PHOTOS: Multiple watercraft in Wyoming found contaminated with invasive species". Oil City News. 2020-08-06. Retrieved 2020-11-15.
  31. ^ "AIS crew intercepts contaminated boats". Wyoming Game and Fish Department.
  32. ^ "Entire lake in Montana may be drained to eradicate invasive clams". Oil City News. 2020-10-20. Retrieved 2020-11-15.
  33. ^ "Lake Elmo Asian clam removal". Montana Department of Fish, Wildlife and Parks. Retrieved 2020-11-15.
  34. ^ Bouchet, P. (2015). Corbicula fluminea (O. F. Müller, 1774). In: MolluscaBase (2015). Accessed through: World Register of Marine Species at on 2015-08-26
  35. ^ It is not entirely clear that this is the correct name (Jueg & Zettler, 2004)
  36. ^ Jueg & Zettler (2004), and see "External links"

7. ^ Weitere, M. et al. (2009) Linking environmental warming to the fitness of the invasive clam Corbicula fluminea, Global Change Biology, Volume 15 Issue 12, Pages 2838 - 2851 [1]

External linksEdit