Open main menu

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

Conformal field theory has important applications[1] to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points.

Scale invariance vs conformal invarianceEdit

In quantum field theory, scale invariance is a common and natural symmetry, because any fixed point of the renormalization group is by definition scale invariant. Conformal symmetry is stronger than scale invariance, and it is less obvious why it occurs in nature.

Under some assumptions it is possible to prove that scale invariance implies conformal invariance in a quantum field theory, for example in unitary compact conformal field theories in two dimensions.

While it is possible for a quantum field theory to be scale invariant but not conformally invariant, examples are rare.[2] For this reason, the terms are often used interchangeably in the context of quantum field theory.

Two dimensions vs higher dimensionsEdit

The number of independent conformal transformations is infinite in two dimensions, and finite in higher dimensions. This makes conformal symmetry much more constraining in two dimensions. All conformal field theories share the ideas and techniques of the conformal bootstrap. But the resulting equations are more powerful in two dimensions, where they are sometimes exactly solvable (for example in the case of minimal models), than in higher dimensions, where numerical approaches dominate.

The development of conformal field theory has been earlier and deeper in the two-dimensional case, in particular after the 1983 article by Belavin, Polyakov and Zamolodchikov.[3] The term conformal field theory has sometimes been used with the meaning of two-dimensional conformal field theory, as in the title of a 1997 textbook.[4] Higher-dimensional conformal field theories have become more popular with the AdS/CFT correspondence in the late 1990s, and the development of numerical conformal bootstrap techniques in the 2000s.

Two dimensionsEdit

Two-dimensional CFTs are (in some way) invariant under an infinite-dimensional symmetry group. For example, consider a CFT on the Riemann sphere. It has the Möbius transformations as the conformal group, which is isomorphic to (the finite-dimensional) PSL(2,C).

However, the infinitesimal conformal transformations[5] form an infinite-dimensional algebra, called the Witt algebra, but this infinity of conformal transformations do not have global inverses on ℂ. Only the primary fields (or chiral fields) are invariant with respect to this full infinitesimal conformal group. Its generators are indexed by integers n,


where Tzz is the holomorphic part of the non-trace piece of the energy momentum tensor of the theory. E.g., for a free scalar field,


In most conformal field theories, a conformal anomaly, also known as a Weyl anomaly, arises in the quantum theory. This results in the appearance of a nontrivial central charge, and the Witt algebra is extended to the Virasoro algebra.

In Euclidean CFT, one has both a holomorphic and an antiholomorphic copy of the Virasoro algebra. In Lorentzian CFT, one has a left-moving and a right moving copy of the Virasoro algebra (spacetime is a cylinder, with space being a circle, and time a line).

This symmetry makes it possible to classify two-dimensional CFTs much more precisely than in higher dimensions. In particular, it is possible to relate the spectrum of primary operators in a theory to the value of the central charge, c.

The Hilbert space of physical states is a unitary module of the Virasoro algebra corresponding to a fixed value of c. Stability requires that the energy spectrum of the Hamiltonian be nonnegative. The modules of interest are the highest weight modules of the Virasoro algebra.

A chiral field is a holomorphic field W(z) which transforms as




Analogously, mutatis mutandis, for an antichiral field. Δ is called the conformal weight of the chiral field W.

Furthermore, it was shown by Alexander Zamolodchikov that there exists a function, C, which decreases monotonically under the renormalization group flow of a two-dimensional quantum field theory, and is equal to the central charge for a two-dimensional conformal field theory. This is known as the Zamolodchikov C-theorem, and tells us that renormalization group flow in two dimensions is irreversible.

Frequently, we are not just interested in the operators, but we are also interested in the vacuum state, or in statistical mechanics, the thermal state. Unless c=0, there can't possibly be any state which leaves the entire infinite dimensional conformal symmetry unbroken. The best we can come up with is a state which is invariant under L−1, L0, L1, Li,  . This contains the Möbius subgroup. The rest of the conformal group is spontaneously broken.

Conformal symmetryEdit

Definition and JacobianEdit

For a given spacetime and metric, a conformal transformation is a transformation that preserves angles. We will focus on conformal transformations of the flat  -dimensional Euclidean space   or of the Minkowski space  .

If   is a conformal transformation, the Jacobian   is of the form


where   is the scale factor, and   is a rotation (i.e. an orthogonal matrix) or Lorentz tranformation.

Conformal groupEdit

The conformal group of   is locally isomorphic to   (Euclidean) or   (Minkowski). This includes translations, rotations (Euclidean) or Lorentz transformations (Minkowski), and dilations i.e. scale transformations


This also includes special conformal transformations. For any translation  , there is a special conformal transformation


where   is the inversion such that


In the sphere  , the inversion exchanges   with  . Translations leave   fixed, while special conformal transformations leave   fixed.

Conformal algebraEdit

The commutation relations of the corresponding Lie algebra are


where   generate translations,   generates dilations,   generate special conformal transformations, and   generate rotations or Lorentz transformations. The tensor   is the flat metric.

Correlation functionsEdit

In the conformal bootstrap approach, a conformal field theory is a set of correlation functions that obey a number of axioms.

The  -point correlation function   is a function of the positions   and other parameters of the fields  . In the bootstrap approach, the fields themselves make sense only in the context of correlation functions, and may be viewed as efficient notations for writing axioms for correlation functions.

Behaviour under conformal transformationsEdit

Any conformal transformation   acts linearly on fields  , such that   is a representation of the conformal group, and correlation functions are invariant:


Primary fields are fields that transform into themselves via  . The behaviour of a primary field is characterized by a number   called its conformal dimension, and a representation   of the rotation or Lorentz group. For a primary field, we then have


Here   and   are the scale factor and rotation that are associated to the conformal transformation  . The representation   is trivial in the case of scalar fields, which transform as   . For vector fields, the representation   is the fundamental representation, and we would have  .

A primary field that is characterized by the conformal dimension   and representation   behaves as a highest-weight vector in an induced representation of the conformal group from the subgroup generated by dilations and rotations. In particular, the conformal dimension   characterizes a representation of the subgroup of dilations.

Derivatives (of any order) of primary fields are called descendant fields. Their behaviour under conformal transformations is more complicated. For example, if   is a primary field, then   is a linear combination of   and  . Correlation functions of descendant fields can be deduced from correlation functions of primary fields. However, even in the common case where all fields are either primaries or descendants thereof, descendant fields play an important role, because quantities such as conformal blocks and operator product expansions involve sums over all descendant fields.

Dependence on field positionsEdit

The invariance of correlation functions under conformal transformations severely constrain their dependence on field positions. In the case of two- and three-point functions, that dependence is determined up to finitely many constant coefficients. Higher-point functions have more freedom, and are only determined up to functions of conformally invariant combinations of the positions.

The two-point function of two primary fields vanishes if their conformal dimensions differ.


If the dilation operator is diagonalizable (i.e. if the theory is not logarithmic), there exists a basis of primary fields such that two-point functions are diagonal, i.e.  . In this case, the two-point function of a scalar primary field is


where we choose the normalization of the field such that the constant coefficient, which is not determined by conformal symmetry, is one. Similarly, two-point functions of non-scalar primary fields are determined up to a coefficient, which can be set to one. In the case of a symmetric traceless tensor of rank  , the two-point function is


where the tensor   is defined as



AdS/CFT correspondenceEdit

Conformal field theories play a prominent role in the AdS/CFT correspondence, in which a gravitational theory in anti-de Sitter space (AdS) is equivalent to a conformal field theory on the AdS boundary. Notable examples are d = 4, N = 4 supersymmetric Yang–Mills theory, which is dual to Type IIB string theory on AdS5 × S5, and d = 3, N = 6 super-Chern–Simons theory, which is dual to M-theory on AdS4 × S7. (The prefix "super" denotes supersymmetry, N denotes the degree of extended supersymmetry possessed by the theory, and d the number of space-time dimensions on the boundary.)

See alsoEdit


  1. ^ Paul Ginsparg (1989), Applied Conformal Field Theory. arXiv:hep-th/9108028. Published in Ecole d'Eté de Physique Théorique: Champs, cordes et phénomènes critiques/Fields, strings and critical phenomena (Les Houches), ed. by E. Brézin and J. Zinn-Justin, Elsevier Science Publishers B.V.
  2. ^ One physical example is the theory of elasticity in two and three dimensions (also known as the theory of a vector field without gauge invariance). See Riva V, Cardy J (2005). "Scale and conformal invariance in field theory: a physical counterexample". Phys. Lett. B. 622: 339–342. arXiv:hep-th/0504197. Bibcode:2005PhLB..622..339R. doi:10.1016/j.physletb.2005.07.010.
  3. ^ Belavin, A.A.; Polyakov, A.M.; Zamolodchikov, A.B. (1984). "Infinite conformal symmetry in two-dimensional quantum field theory" (PDF). Nuclear Physics B. 241 (2): 333–380. Bibcode:1984NuPhB.241..333B. doi:10.1016/0550-3213(84)90052-X. ISSN 0550-3213.
  4. ^ P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, 1997, ISBN 0-387-94785-X
  5. ^ Since the conformal Killing equations in two dimensions,   reduce to just the Cauchy-Riemann equations,  , the infinity of modes of arbitrary analytic coordinate transformations   yield the infinity of Killing vector fields  .

Further readingEdit

External linksEdit