# Arithmetic function

In number theory, an arithmetic, arithmetical, or number-theoretic function[1][2] is for most authors[3][4][5] any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".[6]

An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.

There is a larger class of number-theoretic functions that do not fit the above definition, for example, the prime-counting functions. This article provides links to functions of both classes.

Arithmetic functions are often extremely irregular (see table), but some of them have series expansions in terms of Ramanujan's sum.

## Multiplicative and additive functions

An arithmetic function a is

Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them.

Then an arithmetic function a is

• additive if a(mn) = a(m) + a(n) for all coprime natural numbers m and n;
• multiplicative if a(mn) = a(m)a(n) for all coprime natural numbers m and n.

## Notation

In this article, ${\textstyle \sum _{p}f(p)}$  and ${\textstyle \prod _{p}f(p)}$  mean that the sum or product is over all prime numbers:

${\displaystyle \sum _{p}f(p)=f(2)+f(3)+f(5)+\cdots }$

and
${\displaystyle \prod _{p}f(p)=f(2)f(3)f(5)\cdots .}$

Similarly, ${\textstyle \sum _{p^{k}}f(p^{k})}$  and ${\textstyle \prod _{p^{k}}f(p^{k})}$  mean that the sum or product is over all prime powers with strictly positive exponent (so k = 0 is not included):
${\displaystyle \sum _{p^{k}}f(p^{k})=\sum _{p}\sum _{k>0}f(p^{k})=f(2)+f(3)+f(4)+f(5)+f(7)+f(8)+f(9)+\cdots .}$

The notations ${\textstyle \sum _{d\mid n}f(d)}$  and ${\textstyle \prod _{d\mid n}f(d)}$  mean that the sum or product is over all positive divisors of n, including 1 and n. For example, if n = 12, then

${\displaystyle \prod _{d\mid 12}f(d)=f(1)f(2)f(3)f(4)f(6)f(12).}$

The notations can be combined: ${\textstyle \sum _{p\mid n}f(p)}$  and ${\textstyle \prod _{p\mid n}f(p)}$  mean that the sum or product is over all prime divisors of n. For example, if n = 18, then

${\displaystyle \sum _{p\mid 18}f(p)=f(2)+f(3),}$

and similarly ${\textstyle \sum _{p^{k}\mid n}f(p^{k})}$  and ${\textstyle \prod _{p^{k}\mid n}f(p^{k})}$  mean that the sum or product is over all prime powers dividing n. For example, if n = 24, then
${\displaystyle \prod _{p^{k}\mid 24}f(p^{k})=f(2)f(3)f(4)f(8).}$

## Ω(n), ω(n), νp(n) – prime power decomposition

The fundamental theorem of arithmetic states that any positive integer n can be represented uniquely as a product of powers of primes: ${\displaystyle n=p_{1}^{a_{1}}\cdots p_{k}^{a_{k}}}$  where p1 < p2 < ... < pk are primes and the aj are positive integers. (1 is given by the empty product.)

It is often convenient to write this as an infinite product over all the primes, where all but a finite number have a zero exponent. Define the p-adic valuation νp(n) to be the exponent of the highest power of the prime p that divides n. That is, if p is one of the pi then νp(n) = ai, otherwise it is zero. Then

${\displaystyle n=\prod _{p}p^{\nu _{p}(n)}.}$

In terms of the above the prime omega functions ω and Ω are defined by

ω(n) = k,
Ω(n) = a1 + a2 + ... + ak.

To avoid repetition, whenever possible formulas for the functions listed in this article are given in terms of n and the corresponding pi, ai, ω, and Ω.

## Multiplicative functions

### σk(n), τ(n), d(n) – divisor sums

σk(n) is the sum of the kth powers of the positive divisors of n, including 1 and n, where k is a complex number.

σ1(n), the sum of the (positive) divisors of n, is usually denoted by σ(n).

Since a positive number to the zero power is one, σ0(n) is therefore the number of (positive) divisors of n; it is usually denoted by d(n) or τ(n) (for the German Teiler = divisors).

${\displaystyle \sigma _{k}(n)=\prod _{i=1}^{\omega (n)}{\frac {p_{i}^{(a_{i}+1)k}-1}{p_{i}^{k}-1}}=\prod _{i=1}^{\omega (n)}\left(1+p_{i}^{k}+p_{i}^{2k}+\cdots +p_{i}^{a_{i}k}\right).}$

Setting k = 0 in the second product gives

${\displaystyle \tau (n)=d(n)=(1+a_{1})(1+a_{2})\cdots (1+a_{\omega (n)}).}$

### φ(n) – Euler totient function

φ(n), the Euler totient function, is the number of positive integers not greater than n that are coprime to n.

${\displaystyle \varphi (n)=n\prod _{p\mid n}\left(1-{\frac {1}{p}}\right)=n\left({\frac {p_{1}-1}{p_{1}}}\right)\left({\frac {p_{2}-1}{p_{2}}}\right)\cdots \left({\frac {p_{\omega (n)}-1}{p_{\omega (n)}}}\right).}$

### Jk(n) – Jordan totient function

Jk(n), the Jordan totient function, is the number of k-tuples of positive integers all less than or equal to n that form a coprime (k + 1)-tuple together with n. It is a generalization of Euler's totient, φ(n) = J1(n).

${\displaystyle J_{k}(n)=n^{k}\prod _{p\mid n}\left(1-{\frac {1}{p^{k}}}\right)=n^{k}\left({\frac {p_{1}^{k}-1}{p_{1}^{k}}}\right)\left({\frac {p_{2}^{k}-1}{p_{2}^{k}}}\right)\cdots \left({\frac {p_{\omega (n)}^{k}-1}{p_{\omega (n)}^{k}}}\right).}$

### μ(n) – Möbius function

μ(n), the Möbius function, is important because of the Möbius inversion formula. See Dirichlet convolution, below.

${\displaystyle \mu (n)={\begin{cases}(-1)^{\omega (n)}=(-1)^{\Omega (n)}&{\text{if }}\;\omega (n)=\Omega (n)\\0&{\text{if }}\;\omega (n)\neq \Omega (n).\end{cases}}}$

This implies that μ(1) = 1. (Because Ω(1) = ω(1) = 0.)

### τ(n) – Ramanujan tau function

τ(n), the Ramanujan tau function, is defined by its generating function identity:

${\displaystyle \sum _{n\geq 1}\tau (n)q^{n}=q\prod _{n\geq 1}(1-q^{n})^{24}.}$

Although it is hard to say exactly what "arithmetical property of n" it "expresses",[7] (τ(n) is (2π)−12 times the nth Fourier coefficient in the q-expansion of the modular discriminant function)[8] it is included among the arithmetical functions because it is multiplicative and it occurs in identities involving certain σk(n) and rk(n) functions (because these are also coefficients in the expansion of modular forms).

### cq(n) – Ramanujan's sum

cq(n), Ramanujan's sum, is the sum of the nth powers of the primitive qth roots of unity:

${\displaystyle c_{q}(n)=\sum _{\stackrel {1\leq a\leq q}{\gcd(a,q)=1}}e^{2\pi i{\tfrac {a}{q}}n}.}$

Even though it is defined as a sum of complex numbers (irrational for most values of q), it is an integer. For a fixed value of n it is multiplicative in q:

If q and r are coprime, then ${\displaystyle c_{q}(n)c_{r}(n)=c_{qr}(n).}$

### ψ(n) - Dedekind psi function

The Dedekind psi function, used in the theory of modular functions, is defined by the formula

${\displaystyle \psi (n)=n\prod _{p|n}\left(1+{\frac {1}{p}}\right).}$

## Completely multiplicative functions

### λ(n) – Liouville function

λ(n), the Liouville function, is defined by

${\displaystyle \lambda (n)=(-1)^{\Omega (n)}.}$

### χ(n) – characters

All Dirichlet characters χ(n) are completely multiplicative. Two characters have special notations:

The principal character (mod n) is denoted by χ0(a) (or χ1(a)). It is defined as

${\displaystyle \chi _{0}(a)={\begin{cases}1&{\text{if }}\gcd(a,n)=1,\\0&{\text{if }}\gcd(a,n)\neq 1.\end{cases}}}$

The quadratic character (mod n) is denoted by the Jacobi symbol for odd n (it is not defined for even n):

${\displaystyle \left({\frac {a}{n}}\right)=\left({\frac {a}{p_{1}}}\right)^{a_{1}}\left({\frac {a}{p_{2}}}\right)^{a_{2}}\cdots \left({\frac {a}{p_{\omega (n)}}}\right)^{a_{\omega (n)}}.}$

In this formula ${\displaystyle ({\tfrac {a}{p}})}$  is the Legendre symbol, defined for all integers a and all odd primes p by

${\displaystyle \left({\frac {a}{p}}\right)={\begin{cases}\;\;\,0&{\text{if }}a\equiv 0{\pmod {p}},\\+1&{\text{if }}a\not \equiv 0{\pmod {p}}{\text{ and for some integer }}x,\;a\equiv x^{2}{\pmod {p}}\\-1&{\text{if there is no such }}x.\end{cases}}}$

Following the normal convention for the empty product, ${\displaystyle \left({\frac {a}{1}}\right)=1.}$

### ω(n) – distinct prime divisors

ω(n), defined above as the number of distinct primes dividing n, is additive (see Prime omega function).

## Completely additive functions

### Ω(n) – prime divisors

Ω(n), defined above as the number of prime factors of n counted with multiplicities, is completely additive (see Prime omega function).

### νp(n) – p-adic valuation of an integer n

For a fixed prime p, νp(n), defined above as the exponent of the largest power of p dividing n, is completely additive.

### Logarithmic derivative

${\displaystyle \operatorname {ld} (n)={\frac {D(n)}{n}}=\sum _{\stackrel {p\mid n}{p{\text{ prime}}}}{\frac {v_{p}(n)}{p}}}$ , where ${\displaystyle D(n)}$  is the arithmetic derivative.

## Neither multiplicative nor additive

### π(x), Π(x), θ(x), ψ(x) – prime-counting functions

These important functions (which are not arithmetic functions) are defined for non-negative real arguments, and are used in the various statements and proofs of the prime number theorem. They are summation functions (see the main section just below) of arithmetic functions which are neither multiplicative nor additive.

π(x), the prime-counting function, is the number of primes not exceeding x. It is the summation function of the characteristic function of the prime numbers.

${\displaystyle \pi (x)=\sum _{p\leq x}1}$

A related function counts prime powers with weight 1 for primes, 1/2 for their squares, 1/3 for cubes, ... It is the summation function of the arithmetic function which takes the value 1/k on integers which are the k-th power of some prime number, and the value 0 on other integers.

${\displaystyle \Pi (x)=\sum _{p^{k}\leq x}{\frac {1}{k}}.}$

θ(x) and ψ(x), the Chebyshev functions, are defined as sums of the natural logarithms of the primes not exceeding x.

${\displaystyle \vartheta (x)=\sum _{p\leq x}\log p,}$

${\displaystyle \psi (x)=\sum _{p^{k}\leq x}\log p.}$

The Chebyshev function ψ(x) is the summation function of the von Mangoldt function just below.

### Λ(n) – von Mangoldt function

Λ(n), the von Mangoldt function, is 0 unless the argument n is a prime power pk, in which case it is the natural log of the prime p:

${\displaystyle \Lambda (n)={\begin{cases}\log p&{\text{if }}n=2,3,4,5,7,8,9,11,13,16,\ldots =p^{k}{\text{ is a prime power}}\\0&{\text{if }}n=1,6,10,12,14,15,18,20,21,\dots \;\;\;\;{\text{ is not a prime power}}.\end{cases}}}$

### p(n) – partition function

p(n), the partition function, is the number of ways of representing n as a sum of positive integers, where two representations with the same summands in a different order are not counted as being different:

${\displaystyle p(n)=\left|\left\{(a_{1},a_{2},\dots a_{k}):0

### λ(n) – Carmichael function

λ(n), the Carmichael function, is the smallest positive number such that ${\displaystyle a^{\lambda (n)}\equiv 1{\pmod {n}}}$    for all a coprime to n. Equivalently, it is the least common multiple of the orders of the elements of the multiplicative group of integers modulo n.

For powers of odd primes and for 2 and 4, λ(n) is equal to the Euler totient function of n; for powers of 2 greater than 4 it is equal to one half of the Euler totient function of n:

${\displaystyle \lambda (n)={\begin{cases}\;\;\phi (n)&{\text{if }}n=2,3,4,5,7,9,11,13,17,19,23,25,27,\dots \\{\tfrac {1}{2}}\phi (n)&{\text{if }}n=8,16,32,64,\dots \end{cases}}}$

and for general n it is the least common multiple of λ of each of the prime power factors of n:
${\displaystyle \lambda (p_{1}^{a_{1}}p_{2}^{a_{2}}\dots p_{\omega (n)}^{a_{\omega (n)}})=\operatorname {lcm} [\lambda (p_{1}^{a_{1}}),\;\lambda (p_{2}^{a_{2}}),\dots ,\lambda (p_{\omega (n)}^{a_{\omega (n)}})].}$

### h(n) – Class number

h(n), the class number function, is the order of the ideal class group of an algebraic extension of the rationals with discriminant n. The notation is ambiguous, as there are in general many extensions with the same discriminant. See quadratic field and cyclotomic field for classical examples.

### rk(n) – Sum of k squares

rk(n) is the number of ways n can be represented as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the square roots are counted as different.

${\displaystyle r_{k}(n)=\left|\left\{(a_{1},a_{2},\dots ,a_{k}):n=a_{1}^{2}+a_{2}^{2}+\cdots +a_{k}^{2}\right\}\right|}$

### D(n) – Arithmetic derivative

Using the Heaviside notation for the derivative, the arithmetic derivative D(n) is a function such that

• ${\displaystyle D(n)=1}$  if n prime, and
• ${\displaystyle D(mn)=mD(n)+D(m)n}$  (the product rule)

## Summation functions

Given an arithmetic function a(n), its summation function A(x) is defined by

${\displaystyle A(x):=\sum _{n\leq x}a(n).}$

A can be regarded as a function of a real variable. Given a positive integer m, A is constant along open intervals m < x < m + 1, and has a jump discontinuity at each integer for which a(m) ≠ 0.

Since such functions are often represented by series and integrals, to achieve pointwise convergence it is usual to define the value at the discontinuities as the average of the values to the left and right:

${\displaystyle A_{0}(m):={\frac {1}{2}}\left(\sum _{n

Individual values of arithmetic functions may fluctuate wildly – as in most of the above examples. Summation functions "smooth out" these fluctuations. In some cases it may be possible to find asymptotic behaviour for the summation function for large x.

A classical example of this phenomenon[9] is given by the divisor summatory function, the summation function of d(n), the number of divisors of n:

${\displaystyle \liminf _{n\to \infty }d(n)=2}$

${\displaystyle \limsup _{n\to \infty }{\frac {\log d(n)\log \log n}{\log n}}=\log 2}$

${\displaystyle \lim _{n\to \infty }{\frac {d(1)+d(2)+\cdots +d(n)}{\log(1)+\log(2)+\cdots +\log(n)}}=1.}$

An average order of an arithmetic function is some simpler or better-understood function which has the same summation function asymptotically, and hence takes the same values "on average". We say that g is an average order of f if

${\displaystyle \sum _{n\leq x}f(n)\sim \sum _{n\leq x}g(n)}$

as x tends to infinity. The example above shows that d(n) has the average order log(n).[10]

## Dirichlet convolution

Given an arithmetic function a(n), let Fa(s), for complex s, be the function defined by the corresponding Dirichlet series (where it converges):[11]

${\displaystyle F_{a}(s):=\sum _{n=1}^{\infty }{\frac {a(n)}{n^{s}}}.}$

Fa(s) is called a generating function of a(n). The simplest such series, corresponding to the constant function a(n) = 1 for all n, is ς(s) the Riemann zeta function.

The generating function of the Möbius function is the inverse of the zeta function:

${\displaystyle \zeta (s)\,\sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}}=1,\;\;\Re s>0.}$

Consider two arithmetic functions a and b and their respective generating functions Fa(s) and Fb(s). The product Fa(s)Fb(s) can be computed as follows:

${\displaystyle F_{a}(s)F_{b}(s)=\left(\sum _{m=1}^{\infty }{\frac {a(m)}{m^{s}}}\right)\left(\sum _{n=1}^{\infty }{\frac {b(n)}{n^{s}}}\right).}$

It is a straightforward exercise to show that if c(n) is defined by

${\displaystyle c(n):=\sum _{ij=n}a(i)b(j)=\sum _{i\mid n}a(i)b\left({\frac {n}{i}}\right),}$

then
${\displaystyle F_{c}(s)=F_{a}(s)F_{b}(s).}$

This function c is called the Dirichlet convolution of a and b, and is denoted by ${\displaystyle a*b}$ .

A particularly important case is convolution with the constant function a(n) = 1 for all n, corresponding to multiplying the generating function by the zeta function:

${\displaystyle g(n)=\sum _{d\mid n}f(d).}$

Multiplying by the inverse of the zeta function gives the Möbius inversion formula:

${\displaystyle f(n)=\sum _{d\mid n}\mu \left({\frac {n}{d}}\right)g(d).}$

If f is multiplicative, then so is g. If f is completely multiplicative, then g is multiplicative, but may or may not be completely multiplicative.

## Relations among the functions

There are a great many formulas connecting arithmetical functions with each other and with the functions of analysis, especially powers, roots, and the exponential and log functions. The page divisor sum identities contains many more generalized and related examples of identities involving arithmetic functions.

Here are a few examples:

### Dirichlet convolutions

${\displaystyle \sum _{\delta \mid n}\mu (\delta )=\sum _{\delta \mid n}\lambda \left({\frac {n}{\delta }}\right)|\mu (\delta )|={\begin{cases}1&{\text{if }}n=1\\0&{\text{if }}n\neq 1\end{cases}}}$      where λ is the Liouville function.[12]
${\displaystyle \sum _{\delta \mid n}\varphi (\delta )=n.}$       [13]
${\displaystyle \varphi (n)=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)\delta =n\sum _{\delta \mid n}{\frac {\mu (\delta )}{\delta }}.}$        Möbius inversion
${\displaystyle \sum _{d\mid n}J_{k}(d)=n^{k}.}$       [14]
${\displaystyle J_{k}(n)=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)\delta ^{k}=n^{k}\sum _{\delta \mid n}{\frac {\mu (\delta )}{\delta ^{k}}}.}$        Möbius inversion
${\displaystyle \sum _{\delta \mid n}\delta ^{s}J_{r}(\delta )J_{s}\left({\frac {n}{\delta }}\right)=J_{r+s}(n)}$       [15]
${\displaystyle \sum _{\delta \mid n}\varphi (\delta )d\left({\frac {n}{\delta }}\right)=\sigma (n).}$       [16][17]
${\displaystyle \sum _{\delta \mid n}|\mu (\delta )|=2^{\omega (n)}.}$       [18]
${\displaystyle |\mu (n)|=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)2^{\omega (\delta )}.}$        Möbius inversion
${\displaystyle \sum _{\delta \mid n}2^{\omega (\delta )}=d(n^{2}).}$
${\displaystyle 2^{\omega (n)}=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)d(\delta ^{2}).}$        Möbius inversion
${\displaystyle \sum _{\delta \mid n}d(\delta ^{2})=d^{2}(n).}$
${\displaystyle d(n^{2})=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)d^{2}(\delta ).}$        Möbius inversion
${\displaystyle \sum _{\delta \mid n}d\left({\frac {n}{\delta }}\right)2^{\omega (\delta )}=d^{2}(n).}$
${\displaystyle \sum _{\delta \mid n}\lambda (\delta )={\begin{cases}&1{\text{ if }}n{\text{ is a square }}\\&0{\text{ if }}n{\text{ is not square.}}\end{cases}}}$      where λ is the Liouville function.
${\displaystyle \sum _{\delta \mid n}\Lambda (\delta )=\log n.}$       [19]
${\displaystyle \Lambda (n)=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)\log(\delta ).}$        Möbius inversion

### Sums of squares

For all ${\displaystyle k\geq 4,\;\;\;r_{k}(n)>0.}$      (Lagrange's four-square theorem).

${\displaystyle r_{2}(n)=4\sum _{d\mid n}\left({\frac {-4}{d}}\right),}$  [20]

where the Kronecker symbol has the values

${\displaystyle \left({\frac {-4}{n}}\right)={\begin{cases}+1&{\text{if }}n\equiv 1{\pmod {4}}\\-1&{\text{if }}n\equiv 3{\pmod {4}}\\\;\;\;0&{\text{if }}n{\text{ is even}}.\\\end{cases}}}$

There is a formula for r3 in the section on class numbers below.

${\displaystyle r_{4}(n)=8\sum _{\stackrel {d\mid n}{4\,\nmid \,d}}d=8(2+(-1)^{n})\sum _{\stackrel {d\mid n}{2\,\nmid \,d}}d={\begin{cases}8\sigma (n)&{\text{if }}n{\text{ is odd }}\\24\sigma \left({\frac {n}{2^{\nu }}}\right)&{\text{if }}n{\text{ is even }}\end{cases}},}$

where ν = ν2(n).    [21][22][23]

${\displaystyle r_{6}(n)=16\sum _{d\mid n}\chi \left({\frac {n}{d}}\right)d^{2}-4\sum _{d\mid n}\chi (d)d^{2},}$

where ${\displaystyle \chi (n)=\left({\frac {-4}{n}}\right).}$ [24]

Define the function σk*(n) as[25]

${\displaystyle \sigma _{k}^{*}(n)=(-1)^{n}\sum _{d\mid n}(-1)^{d}d^{k}={\begin{cases}\sum _{d\mid n}d^{k}=\sigma _{k}(n)&{\text{if }}n{\text{ is odd }}\\\sum _{\stackrel {d\mid n}{2\,\mid \,d}}d^{k}-\sum _{\stackrel {d\mid n}{2\,\nmid \,d}}d^{k}&{\text{if }}n{\text{ is even}}.\end{cases}}}$

That is, if n is odd, σk*(n) is the sum of the kth powers of the divisors of n, that is, σk(n), and if n is even it is the sum of the kth powers of the even divisors of n minus the sum of the kth powers of the odd divisors of n.

${\displaystyle r_{8}(n)=16\sigma _{3}^{*}(n).}$     [24][26]

Adopt the convention that Ramanujan's τ(x) = 0 if x is not an integer.

${\displaystyle r_{24}(n)={\frac {16}{691}}\sigma _{11}^{*}(n)+{\frac {128}{691}}\left\{(-1)^{n-1}259\tau (n)-512\tau \left({\frac {n}{2}}\right)\right\}}$     [27]

### Divisor sum convolutions

Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of the product of two power series:

${\displaystyle \left(\sum _{n=0}^{\infty }a_{n}x^{n}\right)\left(\sum _{n=0}^{\infty }b_{n}x^{n}\right)=\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }a_{i}b_{j}x^{i+j}=\sum _{n=0}^{\infty }\left(\sum _{i=0}^{n}a_{i}b_{n-i}\right)x^{n}=\sum _{n=0}^{\infty }c_{n}x^{n}.}$

The sequence ${\displaystyle c_{n}=\sum _{i=0}^{n}a_{i}b_{n-i}}$  is called the convolution or the Cauchy product of the sequences an and bn.
These formulas may be proved analytically (see Eisenstein series) or by elementary methods.[28]

${\displaystyle \sigma _{3}(n)={\frac {1}{5}}\left\{6n\sigma _{1}(n)-\sigma _{1}(n)+12\sum _{0     [29]
${\displaystyle \sigma _{5}(n)={\frac {1}{21}}\left\{10(3n-1)\sigma _{3}(n)+\sigma _{1}(n)+240\sum _{0     [30]
{\displaystyle {\begin{aligned}\sigma _{7}(n)&={\frac {1}{20}}\left\{21(2n-1)\sigma _{5}(n)-\sigma _{1}(n)+504\sum _{0     [30][31]
{\displaystyle {\begin{aligned}\sigma _{9}(n)&={\frac {1}{11}}\left\{10(3n-2)\sigma _{7}(n)+\sigma _{1}(n)+480\sum _{0     [29][32]
${\displaystyle \tau (n)={\frac {65}{756}}\sigma _{11}(n)+{\frac {691}{756}}\sigma _{5}(n)-{\frac {691}{3}}\sum _{0      where τ(n) is Ramanujan's function.    [33][34]

Since σk(n) (for natural number k) and τ(n) are integers, the above formulas can be used to prove congruences[35] for the functions. See Ramanujan tau function for some examples.

Extend the domain of the partition function by setting p(0) = 1.

${\displaystyle p(n)={\frac {1}{n}}\sum _{1\leq k\leq n}\sigma (k)p(n-k).}$     [36]   This recurrence can be used to compute p(n).

### Class number related

Peter Gustav Lejeune Dirichlet discovered formulas that relate the class number h of quadratic number fields to the Jacobi symbol.[37]

An integer D is called a fundamental discriminant if it is the discriminant of a quadratic number field. This is equivalent to D ≠ 1 and either a) D is squarefree and D ≡ 1 (mod 4) or b) D ≡ 0 (mod 4), D/4 is squarefree, and D/4 ≡ 2 or 3 (mod 4).[38]

Extend the Jacobi symbol to accept even numbers in the "denominator" by defining the Kronecker symbol:

${\displaystyle \left({\frac {a}{2}}\right)={\begin{cases}\;\;\,0&{\text{ if }}a{\text{ is even}}\\(-1)^{\frac {a^{2}-1}{8}}&{\text{ if }}a{\text{ is odd. }}\end{cases}}}$

Then if D < −4 is a fundamental discriminant[39][40]

{\displaystyle {\begin{aligned}h(D)&={\frac {1}{D}}\sum _{r=1}^{|D|}r\left({\frac {D}{r}}\right)\\&={\frac {1}{2-\left({\tfrac {D}{2}}\right)}}\sum _{r=1}^{|D|/2}\left({\frac {D}{r}}\right).\end{aligned}}}

There is also a formula relating r3 and h. Again, let D be a fundamental discriminant, D < −4. Then[41]

${\displaystyle r_{3}(|D|)=12\left(1-\left({\frac {D}{2}}\right)\right)h(D).}$

### Prime-count related

Let ${\displaystyle H_{n}=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}}$    be the nth harmonic number. Then

${\displaystyle \sigma (n)\leq H_{n}+e^{H_{n}}\log H_{n}}$    is true for every natural number n if and only if the Riemann hypothesis is true.    [42]

The Riemann hypothesis is also equivalent to the statement that, for all n > 5040,

${\displaystyle \sigma (n)

(where γ is the Euler–Mascheroni constant). This is Robin's theorem.
${\displaystyle \sum _{p}\nu _{p}(n)=\Omega (n).}$
${\displaystyle \psi (x)=\sum _{n\leq x}\Lambda (n).}$     [43]
${\displaystyle \Pi (x)=\sum _{n\leq x}{\frac {\Lambda (n)}{\log n}}.}$     [44]
${\displaystyle e^{\theta (x)}=\prod _{p\leq x}p.}$     [45]
${\displaystyle e^{\psi (x)}=\operatorname {lcm} [1,2,\dots ,\lfloor x\rfloor ].}$     [46]

### Menon's identity

In 1965 P Kesava Menon proved[47]

${\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}\gcd(k-1,n)=\varphi (n)d(n).}$

This has been generalized by a number of mathematicians. For example,

• B. Sury[48]
${\displaystyle \sum _{\stackrel {1\leq k_{1},k_{2},\dots ,k_{s}\leq n}{\gcd(k_{1},n)=1}}\gcd(k_{1}-1,k_{2},\dots ,k_{s},n)=\varphi (n)\sigma _{s-1}(n).}$

• N. Rao[49]
${\displaystyle \sum _{\stackrel {1\leq k_{1},k_{2},\dots ,k_{s}\leq n}{\gcd(k_{1},k_{2},\dots ,k_{s},n)=1}}\gcd(k_{1}-a_{1},k_{2}-a_{2},\dots ,k_{s}-a_{s},n)^{s}=J_{s}(n)d(n),}$

where a1, a2, ..., as are integers, gcd(a1, a2, ..., as, n) = 1.
• László Fejes Tóth[50]
${\displaystyle \sum _{\stackrel {1\leq k\leq m}{\gcd(k,m)=1}}\gcd(k^{2}-1,m_{1})\gcd(k^{2}-1,m_{2})=\varphi (n)\sum _{\stackrel {d_{1}\mid m_{1}}{d_{2}\mid m_{2}}}\varphi (\gcd(d_{1},d_{2}))2^{\omega (\operatorname {lcm} (d_{1},d_{2}))},}$

where m1 and m2 are odd, m = lcm(m1, m2).

In fact, if f is any arithmetical function[51][52]

${\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}f(\gcd(k-1,n))=\varphi (n)\sum _{d\mid n}{\frac {(\mu *f)(d)}{\varphi (d)}},}$

where ${\displaystyle *}$  stands for Dirichlet convolution.

### Miscellaneous

Let m and n be distinct, odd, and positive. Then the Jacobi symbol satisfies the law of quadratic reciprocity:

${\displaystyle \left({\frac {m}{n}}\right)\left({\frac {n}{m}}\right)=(-1)^{(m-1)(n-1)/4}.}$

Let D(n) be the arithmetic derivative. Then the logarithmic derivative

${\displaystyle {\frac {D(n)}{n}}=\sum _{\stackrel {p\mid n}{p{\text{ prime}}}}{\frac {v_{p}(n)}{p}}.}$

See Arithmetic derivative for details.

Let λ(n) be Liouville's function. Then

${\displaystyle |\lambda (n)|\mu (n)=\lambda (n)|\mu (n)|=\mu (n),}$      and
${\displaystyle \lambda (n)\mu (n)=|\mu (n)|=\mu ^{2}(n).}$

Let λ(n) be Carmichael's function. Then

${\displaystyle \lambda (n)\mid \phi (n).}$      Further,
${\displaystyle \lambda (n)=\phi (n){\text{ if and only if }}n={\begin{cases}1,2,4;\\3,5,7,9,11,\ldots {\text{ (that is, }}p^{k}{\text{, where }}p{\text{ is an odd prime)}};\\6,10,14,18,\ldots {\text{ (that is, }}2p^{k}{\text{, where }}p{\text{ is an odd prime)}}.\end{cases}}}$
${\displaystyle 2^{\omega (n)}\leq d(n)\leq 2^{\Omega (n)}.}$     [53][54]
${\displaystyle {\frac {6}{\pi ^{2}}}<{\frac {\phi (n)\sigma (n)}{n^{2}}}<1.}$     [55]
{\displaystyle {\begin{aligned}c_{q}(n)&={\frac {\mu \left({\frac {q}{\gcd(q,n)}}\right)}{\phi \left({\frac {q}{\gcd(q,n)}}\right)}}\phi (q)\\&=\sum _{\delta \mid \gcd(q,n)}\mu \left({\frac {q}{\delta }}\right)\delta .\end{aligned}}}     [56]     Note that  ${\displaystyle \phi (q)=\sum _{\delta \mid q}\mu \left({\frac {q}{\delta }}\right)\delta .}$     [57]
${\displaystyle c_{q}(1)=\mu (q).}$
${\displaystyle c_{q}(q)=\phi (q).}$
${\displaystyle \sum _{\delta \mid n}d^{3}(\delta )=\left(\sum _{\delta \mid n}d(\delta )\right)^{2}.}$     [58]   Compare this with 13 + 23 + 33 + ... + n3 = (1 + 2 + 3 + ... + n)2
${\displaystyle d(uv)=\sum _{\delta \mid \gcd(u,v)}\mu (\delta )d\left({\frac {u}{\delta }}\right)d\left({\frac {v}{\delta }}\right).}$     [59]
${\displaystyle \sigma _{k}(u)\sigma _{k}(v)=\sum _{\delta \mid \gcd(u,v)}\delta ^{k}\sigma _{k}\left({\frac {uv}{\delta ^{2}}}\right).}$     [60]
${\displaystyle \tau (u)\tau (v)=\sum _{\delta \mid \gcd(u,v)}\delta ^{11}\tau \left({\frac {uv}{\delta ^{2}}}\right),}$      where τ(n) is Ramanujan's function.    [61]

## First 100 values of some arithmetic functions

n factorization 𝜙(n) ω(n) Ω(n) 𝜆(n) 𝜇(n) 𝜆(n) π(n) 𝜎0(n) 𝜎1(n) 𝜎2(n) r2(n) r3(n) r4(n)
1 1 1 0 0 1 1 0 0 1 1 1 4 6 8
2 2 1 1 1 −1 −1 0.69 1 2 3 5 4 12 24
3 3 2 1 1 −1 −1 1.10 2 2 4 10 0 8 32
4 22 2 1 2 1 0 0.69 2 3 7 21 4 6 24
5 5 4 1 1 −1 −1 1.61 3 2 6 26 8 24 48
6 2 · 3 2 2 2 1 1 0 3 4 12 50 0 24 96
7 7 6 1 1 −1 −1 1.95 4 2 8 50 0 0 64
8 23 4 1 3 −1 0 0.69 4 4 15 85 4 12 24
9 32 6 1 2 1 0 1.10 4 3 13 91 4 30 104
10 2 · 5 4 2 2 1 1 0 4 4 18 130 8 24 144
11 11 10 1 1 −1 −1 2.40 5 2 12 122 0 24 96
12 22 · 3 4 2 3 −1 0 0 5 6 28 210 0 8 96
13 13 12 1 1 −1 −1 2.56 6 2 14 170 8 24 112
14 2 · 7 6 2 2 1 1 0 6 4 24 250 0 48 192
15 3 · 5 8 2 2 1 1 0 6 4 24 260 0 0 192
16 24 8 1 4 1 0 0.69 6 5 31 341 4 6 24
17 17 16 1 1 −1 −1 2.83 7 2 18 290 8 48 144
18 2 · 32 6 2 3 −1 0 0 7 6 39 455 4 36 312
19 19 18 1 1 −1 −1 2.94 8 2 20 362 0 24 160
20 22 · 5 8 2 3 −1 0 0 8 6 42 546 8 24 144
21 3 · 7 12 2 2 1 1 0 8 4 32 500 0 48 256
22 2 · 11 10 2 2 1 1 0 8 4 36 610 0 24 288
23 23 22 1 1 −1 −1 3.14 9 2 24 530 0 0 192
24 23 · 3 8 2 4 1 0 0 9 8 60 850 0 24 96
25 52 20 1 2 1 0 1.61 9 3 31 651 12 30 248
26 2 · 13 12 2 2 1 1 0 9 4 42 850 8 72 336
27 33 18 1 3 −1 0 1.10 9 4 40 820 0 32 320
28 22 · 7 12 2 3 −1 0 0 9 6 56 1050 0 0 192
29 29 28 1 1 −1 −1 3.37 10 2 30 842 8 72 240
30 2 · 3 · 5 8 3 3 −1 −1 0 10 8 72 1300 0 48 576
31 31 30 1 1 −1 −1 3.43 11 2 32 962 0 0 256
32 25 16 1 5 −1 0 0.69 11 6 63 1365 4 12 24
33 3 · 11 20 2 2 1 1 0 11 4 48 1220 0 48 384
34 2 · 17 16 2 2 1 1 0 11 4 54 1450 8 48 432
35 5 · 7 24 2 2 1 1 0 11 4 48 1300 0 48 384
36 22 · 32 12 2 4 1 0 0 11 9 91 1911 4 30 312
37 37 36 1 1 −1 −1 3.61 12 2 38 1370 8 24 304
38 2 · 19 18 2 2 1 1 0 12 4 60 1810 0 72 480
39 3 · 13 24 2 2 1 1 0 12 4 56 1700 0 0 448
40 23 · 5 16 2 4 1 0 0 12 8 90 2210 8 24 144
41 41 40 1 1 −1 −1 3.71 13 2 42 1682 8 96 336
42 2 · 3 · 7 12 3 3 −1 −1 0 13 8 96 2500 0 48 768
43 43 42 1 1 −1 −1 3.76 14 2 44 1850 0 24 352
44 22 · 11 20 2 3 −1 0 0 14 6 84 2562 0 24 288
45 32 · 5 24 2 3 −1 0 0 14 6 78 2366 8 72 624
46 2 · 23 22 2 2 1 1 0 14 4 72 2650 0 48 576
47 47 46 1 1 −1 −1 3.85 15 2 48 2210 0 0 384
48 24 · 3 16 2 5 −1 0 0 15 10 124 3410 0 8 96
49 72 42 1 2 1 0 1.95 15 3 57 2451 4 54 456
50 2 · 52 20 2 3 −1 0 0 15 6 93 3255 12 84 744
51 3 · 17 32 2 2 1 1 0 15 4 72 2900 0 48 576
52 22 · 13 24 2 3 −1 0 0 15 6 98 3570 8 24 336
53 53 52 1 1 −1 −1 3.97 16 2 54 2810 8 72 432
54 2 · 33 18 2 4 1 0 0 16 8 120 4100 0 96 960
55 5 · 11 40 2 2 1 1 0 16 4 72 3172 0 0 576
56 23 · 7 24 2 4 1 0 0 16 8 120 4250 0 48 192
57 3 · 19 36 2 2 1 1 0 16 4 80 3620 0 48 640
58 2 · 29 28 2 2 1 1 0 16 4 90 4210 8 24 720
59 59 58 1 1 −1 −1 4.08 17 2 60 3482 0 72 480
60 22 · 3 · 5 16 3 4 1 0 0 17 12 168 5460 0 0 576
61 61 60 1 1 −1 −1 4.11 18 2 62 3722 8 72 496
62 2 · 31 30 2 2 1 1 0 18 4 96 4810 0 96 768
63 32 · 7 36 2 3 −1 0 0 18 6 104 4550 0 0 832
64 26 32 1 6 1 0 0.69 18 7 127 5461 4 6 24
65 5 · 13 48 2 2 1 1 0 18 4 84 4420 16 96 672
66 2 · 3 · 11 20 3 3 −1 −1 0 18 8 144 6100 0 96 1152
67 67 66 1 1 −1 −1 4.20 19 2 68 4490 0 24 544
68 22 · 17 32 2 3 −1 0 0 19 6 126 6090 8 48 432
69 3 · 23 44 2 2 1 1 0 19 4 96 5300 0 96 768
70 2 · 5 · 7 24 3 3 −1 −1 0 19 8 144 6500 0 48 1152
71 71 70 1 1 −1 −1 4.26 20 2 72 5042 0 0 576
72 23 · 32 24 2 5 −1 0 0 20 12 195 7735 4 36 312
73 73 72 1 1 −1 −1 4.29 21 2 74 5330 8 48 592
74 2 · 37 36 2 2 1 1 0 21 4 114 6850 8 120 912
75 3 · 52 40 2 3 −1 0 0 21 6 124 6510 0 56 992
76 22 · 19 36 2 3 −1 0 0 21 6 140 7602 0 24 480
77 7 · 11 60 2 2 1 1 0 21 4 96 6100 0 96 768
78 2 · 3 · 13 24 3 3 −1 −1 0 21 8 168 8500 0 48 1344
79 79 78 1 1 −1 −1 4.37 22 2 80 6242 0 0 640
80 24 · 5 32 2 5 −1 0 0 22 10 186 8866 8 24 144
81 34 54 1 4 1 0 1.10 22 5 121 7381 4 102 968
82 2 · 41 40 2 2 1 1 0 22 4 126 8410 8 48 1008
83 83 82 1 1 −1 −1 4.42 23 2 84 6890 0 72 672
84 22 · 3 · 7 24 3 4 1 0 0 23 12 224 10500 0 48 768
85 5 · 17 64 2 2 1 1 0 23 4 108 7540 16 48 864
86 2 · 43 42 2 2 1 1 0 23 4 132 9250 0 120 1056
87 3 · 29 56 2 2 1 1 0 23 4 120 8420 0 0 960
88 23 · 11 40 2 4 1 0 0 23 8 180 10370 0 24 288
89 89 88 1 1 −1 −1 4.49 24 2 90 7922 8 144 720
90 2 · 32 · 5 24 3 4 1 0 0 24 12 234 11830 8 120 1872
91 7 · 13 72 2 2 1 1 0 24 4 112 8500 0 48 896
92 22 · 23 44 2 3 −1 0 0 24 6 168 11130 0 0 576
93 3 · 31 60 2 2 1 1 0 24 4 128 9620 0 48 1024
94 2 · 47 46 2 2 1 1 0 24 4 144 11050 0 96 1152
95 5 · 19 72 2 2 1 1 0 24 4 120 9412 0 0 960
96 25 · 3 32 2 6 1 0 0 24 12 252 13650 0 24 96
97 97 96 1 1 −1 −1 4.57 25 2 98 9410 8 48 784
98 2 · 72 42 2 3 −1 0 0 25 6 171 12255 4 108 1368
99 32 · 11 60 2 3 −1 0 0 25 6 156 11102 0 72 1248
100 22 · 52 40 2 4 1 0 0 25 9 217 13671 12 30 744
n factorization 𝜙(n) ω(n) Ω(n) 𝜆(n) 𝜇(n) 𝜆(n) π(n) 𝜎0(n) 𝜎1(n) 𝜎2(n) r2(n) r3(n) r4(n)

## Notes

1. ^ Long (1972, p. 151)
2. ^ Pettofrezzo & Byrkit (1970, p. 58)
3. ^ Niven & Zuckerman, 4.2.
4. ^ Nagell, I.9.
5. ^ Bateman & Diamond, 2.1.
6. ^ Hardy & Wright, intro. to Ch. XVI
7. ^ Hardy, Ramanujan, § 10.2
8. ^ Apostol, Modular Functions ..., § 1.15, Ch. 4, and ch. 6
9. ^ Hardy & Wright, §§ 18.1–18.2
10. ^ Gérald Tenenbaum (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge studies in advanced mathematics. Vol. 46. Cambridge University Press. pp. 36–55. ISBN 0-521-41261-7.
11. ^ Hardy & Wright, § 17.6, show how the theory of generating functions can be constructed in a purely formal manner with no attention paid to convergence.
12. ^ Hardy & Wright, Thm. 263
13. ^ Hardy & Wright, Thm. 63
14. ^ see references at Jordan's totient function
15. ^ Holden et al. in external links The formula is Gegenbauer's
16. ^ Hardy & Wright, Thm. 288–290
17. ^ Dineva in external links, prop. 4
18. ^ Hardy & Wright, Thm. 264
19. ^ Hardy & Wright, Thm. 296
20. ^ Hardy & Wright, Thm. 278
21. ^ Hardy & Wright, Thm. 386
22. ^ Hardy, Ramanujan, eqs 9.1.2, 9.1.3
23. ^ Koblitz, Ex. III.5.2
24. ^ a b Hardy & Wright, § 20.13
25. ^ Hardy, Ramanujan, § 9.7
26. ^ Hardy, Ramanujan, § 9.13
27. ^ Hardy, Ramanujan, § 9.17
28. ^ Williams, ch. 13; Huard, et al. (external links).
29. ^ a b Ramanujan, On Certain Arithmetical Functions, Table IV; Papers, p. 146
30. ^ a b Koblitz, ex. III.2.8
31. ^ Koblitz, ex. III.2.3
32. ^ Koblitz, ex. III.2.2
33. ^ Koblitz, ex. III.2.4
34. ^ Apostol, Modular Functions ..., Ex. 6.10
35. ^ Apostol, Modular Functions..., Ch. 6 Ex. 10
36. ^ G.H. Hardy, S. Ramannujan, Asymptotic Formulæ in Combinatory Analysis, § 1.3; in Ramannujan, Papers p. 279
37. ^ Landau, p. 168, credits Gauss as well as Dirichlet
38. ^ Cohen, Def. 5.1.2
39. ^ Cohen, Corr. 5.3.13
40. ^ see Edwards, § 9.5 exercises for more complicated formulas.
41. ^ Cohen, Prop 5.3.10
42. ^ See Divisor function.
43. ^ Hardy & Wright, eq. 22.1.2
44. ^
45. ^ Hardy & Wright, eq. 22.1.1
46. ^ Hardy & Wright, eq. 22.1.3
47. ^ László Tóth, Menon's Identity and Arithmetical Sums ..., eq. 1
48. ^ Tóth, eq. 5
49. ^ Tóth, eq. 3
50. ^ Tóth, eq. 35
51. ^ Tóth, eq. 2
52. ^ Tóth states that Menon proved this for multiplicative f in 1965 and V. Sita Ramaiah for general f.
53. ^ Hardy Ramanujan, eq. 3.10.3
54. ^ Hardy & Wright, § 22.13
55. ^ Hardy & Wright, Thm. 329
56. ^ Hardy & Wright, Thms. 271, 272
57. ^ Hardy & Wright, eq. 16.3.1
58. ^ Ramanujan, Some Formulæ in the Analytic Theory of Numbers, eq. (C); Papers p. 133. A footnote says that Hardy told Ramanujan it also appears in an 1857 paper by Liouville.
59. ^ Ramanujan, Some Formulæ in the Analytic Theory of Numbers, eq. (F); Papers p. 134
60. ^ Apostol, Modular Functions ..., ch. 6 eq. 4
61. ^ Apostol, Modular Functions ..., ch. 6 eq. 3