Analytic torsion

In mathematics, Reidemeister torsion (or R-torsion, or Reidemeister–Franz torsion) is a topological invariant of manifolds introduced by Kurt Reidemeister (Reidemeister 1935) for 3-manifolds and generalized to higher dimensions by Wolfgang Franz (1935) and Georges de Rham (1936). Analytic torsion (or Ray–Singer torsion) is an invariant of Riemannian manifolds defined by Daniel B. Ray and Isadore M. Singer (1971, 1973a, 1973b) as an analytic analogue of Reidemeister torsion. Jeff Cheeger (1977, 1979) and Werner Müller (1978) proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds.

Reidemeister torsion was the first invariant in algebraic topology that could distinguish between closed manifolds which are homotopy equivalent but not homeomorphic, and can thus be seen as the birth of geometric topology as a distinct field. It can be used to classify lens spaces.

Reidemeister torsion is closely related to Whitehead torsion; see (Milnor 1966). It has also given some important motivation to arithmetic topology; see (Mazur). For more recent work on torsion see the books (Turaev 2002) and (Nicolaescu 2002, 2003).

Definition of analytic torsionEdit

If M is a Riemannian manifold and E a vector bundle over M, then there is a Laplacian operator acting on the i-forms with values in E. If the eigenvalues on i-forms are λj then the zeta function ζi is defined to be


for s large, and this is extended to all complex s by analytic continuation. The zeta regularized determinant of the Laplacian acting on i-forms is


which is formally the product of the positive eigenvalues of the laplacian acting on i-forms. The analytic torsion T(M,E) is defined to be


Definition of Reidemeister torsionEdit

Let   be a finite connected CW-complex with fundamental group   and universal cover  , and let   be an orthogonal finite-dimensional  -representation. Suppose that


for all n. If we fix a cellular basis for   and an orthogonal  -basis for  , then   is a contractible finite based free  -chain complex. Let   be any chain contraction of D*, i.e.   for all  . We obtain an isomorphism   with  ,  . We define the Reidemeister torsion


where A is the matrix of   with respect to the given bases. The Reidemeister torsion   is independent of the choice of the cellular basis for  , the orthogonal basis for   and the chain contraction  .

Let   be a compact smooth manifold, and let   be a unimodular representation.   has a smooth triangulation. For any choice of a volume  , we get an invariant  . Then we call the positive real number   the Reidemeister torsion of the manifold   with respect to   and  .

A short history of Reidemeister torsionEdit

Reidemeister torsion was first used to combinatorially classify 3-dimensional lens spaces in (Reidemeister 1935) by Reidemeister, and in higher-dimensional spaces by Franz. The classification includes examples of homotopy equivalent 3-dimensional manifolds which are not homeomorphic — at the time (1935) the classification was only up to PL homeomorphism, but later E.J. Brody (1960) showed that this was in fact a classification up to homeomorphism.

J. H. C. Whitehead defined the "torsion" of a homotopy equivalence between finite complexes. This is a direct generalization of the Reidemeister, Franz, and de Rham concept; but is a more delicate invariant. Whitehead torsion provides a key tool for the study of combinatorial or differentiable manifolds with nontrivial fundamental group and is closely related to the concept of "simple homotopy type", see (Milnor 1966)

In 1960 Milnor discovered the duality relation of torsion invariants of manifolds and show that the (twisted) Alexander polynomial of knots is the Reidemister torsion of its knot complement in  . (Milnor 1962) For each q the Poincaré duality   induces


and then we obtain


The representation of the fundamental group of knot complement plays a central role in them. It gives the relation between knot theory and torsion invariants.

Cheeger–Müller theoremEdit

Let   be an orientable compact Riemann manifold of dimension n and   a representation of the fundamental group of   on a real vector space of dimension N. Then we can define the de Rham complex


and the formal adjoint   and   due to the flatness of  . As usual, we also obtain the Hodge Laplacian on p-forms


Assuming that  , the Laplacian is then a symmetric positive semi-positive elliptic operator with pure point spectrum


As before, we can therefore define a zeta function associated with the Laplacian   on   by


where   is the projection of   onto the kernel space   of the Laplacian  . It was moreover shown by (Seeley 1967) that   extends to a meromorphic function of   which is holomorphic at  .

As in the case of an orthogonal representation, we define the analytic torsion   by


In 1971 D.B. Ray and I.M. Singer conjectured that   for any unitary representation  . This Ray–Singer conjecture was eventually proved, independently, by Cheeger (1977, 1979) and Müller (1978). Both approaches focus on the logarithm of torsions and their traces. This is easier for odd-dimensional manifolds than in the even-dimensional case, which involves additional technical difficulties. This Cheeger–Müller theorem (that the two notions of torsion are equivalent), along with Atiyah–Patodi–Singer theorem, later provided the basis for Chern–Simons perturbation theory.

A proof of the Cheeger-Müller theorem for arbitrary representations was later given by J. M. Bismut and Weiping Zhang. Their proof uses the Witten deformation.