Ampere (microarchitecture)

Ampere is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to both the Volta and Turing architectures, officially announced on May 14, 2020. It is named after French mathematician and physicist André-Marie Ampère.[1][2] Nvidia announced the next-generation GeForce 30 series consumer GPUs at a GeForce Special Event on September 1, 2020.[3][4] Nvidia announced A100 80GB GPU at SC20 on November 16, 2020.[5] Mobile RTX graphics cards and the RTX 3060 were revealed on January 12, 2021.[6] Nvidia also announced Ampere's successors, tentatively codenamed "Ampere Next" for a 2022 release and "Ampere Next Next" for a 2024 release at GPU Technology Conference 2021.

Nvidia Ampere
Release dateMay 14, 2020 (2020-05-14)
Fabrication process


Architectural improvements of the Ampere architecture include the following:

  • CUDA Compute Capability 8.0 for A100 and 8.6 for the GeForce 30 series[7]
  • TSMC's 7 nm FinFET process for A100
  • Custom version of Samsung's 8nm process (8N) for the GeForce 30 series[8]
  • Third-generation Tensor Cores with FP16, bfloat16, TensorFloat-32 (TF32) and FP64 support and sparsity acceleration[9]
  • Second-generation ray tracing cores; concurrent ray tracing, shading, and compute for the GeForce 30 series
  • High Bandwidth Memory 2 (HBM2) on A100 40GB & A100 80GB
  • GDDR6X memory for GeForce RTX 3090, RTX 3080 Ti, RTX 3080, RTX 3070 Ti
  • Double FP32 cores per SM on GA10x GPUs
  • NVLink 3.0 with a 50Gbit/s per pair throughput[9]
  • PCI Express 4.0 with SR-IOV support (SR-IOV is reserved only for A100)
  • Multi-Instance GPU (MIG) virtualization and GPU partitioning feature in A100 supporting up to seven instances
  • PureVideo feature set K hardware video decoding with AV1 hardware decoding[10] for the GeForce 30 series and feature set J for A100
  • 5 NVDEC for A100
  • Adds new hardware-based 5-core JPEG decode (NVJPG) with YUV420, YUV422, YUV444, YUV400, RGBA. Should not be confused with Nvidia NVJPEG (GPU-accelerated library for JPEG encoding/decoding)


  • GA100
  • GA102
  • GA104
  • GA106
  • GA107

Comparison of Compute Capability: GP100 vs GV100 vs GA100[11]

GPU Features NVIDIA Tesla P100 NVIDIA Tesla V100 NVIDIA A100
GPU Codename GP100 GV100 GA100
GPU Architecture NVIDIA Pascal NVIDIA Volta NVIDIA Ampere
Compute Capability 6.0 7.0 8.0
Threads / Warp 32 32 32
Max Warps / SM 64 64 64
Max Threads / SM 2048 2048 2048
Max Thread Blocks / SM 32 32 32
Max 32-bit Registers / SM 65536 65536 65536
Max Registers / Block 65536 65536 65536
Max Registers / Thread 255 255 255
Max Thread Block Size 1024 1024 1024
FP32 Cores / SM 64 64 64
Ratio of SM Registers to FP32 Cores 1024 1024 1024
Shared Memory Size / SM 64 KB Configurable up to 96 KB Configurable up to 164 KB

Comparison of Precision Support Matrix[12][13]

Supported CUDA Core Precisions Supported Tensor Core Precisions
FP16 FP32 FP64 INT1 INT4 INT8 TF32 BF16 FP16 FP32 FP64 INT1 INT4 INT8 TF32 BF16
NVIDIA Tesla P4 No Yes Yes No No Yes No No No No No No No No No No
NVIDIA P100 Yes Yes Yes No No No No No No No No No No No No No
NVIDIA Volta Yes Yes Yes No No Yes No No Yes No No No No No No No
NVIDIA Turing Yes Yes Yes No No Yes No No Yes No No Yes Yes Yes No No
NVIDIA A100 Yes Yes Yes No No Yes No Yes Yes No Yes Yes Yes Yes Yes Yes


  • FPnn: floating point with nn bits
  • INTn: integer with n bits
  • INT1: binary
  • TF32: TensorFloat32
  • BF16: bfloat16

Comparison of Decode Performance

Concurrent Streams H.264 Decode (1080p30) H.265(HEVC) Decode (1080p30) VP9 Decode (1080p30)
V100 16 22 22
A100 75 157 108

A100 accelerator and DGX A100Edit

Announced and released on May 14, 2020 was the Ampere-based A100 accelerator.[9] The A100 features 19.5 teraflops of FP32 performance, 6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth.[14] The A100 accelerator was initially available only in the 3rd generation of DGX server, including 8 A100s.[9] Also included in the DGX A100 is 15TB of PCIe gen 4 NVMe storage,[14] two 64-core AMD Rome 7742 CPUs, 1 TB of RAM, and Mellanox-powered HDR InfiniBand interconnect. The initial price for the DGX A100 was $199,000.[9]

Comparison of accelerators used in DGX:[9][15]

A100 80GB​
Architecture FP32 CUDA Cores FP64 Cores(excl. Tensor) INT32 Cores Boost Clock Memory Clock Memory Bus Width Memory Bandwidth VRAM Single Precision Double Precision(FP64) INT8(non-Tensor) INT8 Tensor INT32 FP16 FP16 Tensor bfloat16 Tensor TensorFloat-32(TF32) Tensor FP64 Tensor Interconnect GPU L1 Cache Size L2 Cache Size GPU Die Size Transistor Count TDP Manufacturing Process
Ampere 6912 3456 6912 1410 MHz 3.2Gbit/s HBM2 5120-bit 2039GB/sec 80GB 19.5 TFLOPs 9.7 TFLOPs N/A 624 TOPs 19.5 TOPs 78 TFLOPs 312 TFLOPs 312 TFLOPs 156 TFLOPs 19.5 TFLOPs 600GB/sec GA100 20736KB(192KBx108) 40960 KB 826mm2 54.2B 400W TSMC 7 nm N7
Ampere 6912 3456 6912 1410 MHz 2.4Gbit/s HBM2 5120-bit 1555GB/sec 40GB 19.5 TFLOPs 9.7 TFLOPs N/A 624 TOPs 19.5 TOPs 78 TFLOPs 312 TFLOPs 312 TFLOPs 156 TFLOPs 19.5 TFLOPs 600GB/sec GA100 20736KB(192KBx108) 40960 KB 826mm2 54.2B 400W TSMC 7 nm N7
Volta 5120 2560 5120 1530 MHz 1.75Gbit/s HBM2 4096-bit 900GB/sec 16GB/32GB 15.7 TFLOPs 7.8 TFLOPs 62 TOPs N/A 15.7 TOPs 31.4 TFLOPs 125 TFLOPs N/A N/A N/A 300GB/sec GV100 10240KB(128KBx80) 6144 KB 815mm2 21.1B 300W/350W TSMC 12 nm FFN
Pascal 3584 1792 N/A 1480 MHz 1.4Gbit/s HBM2 4096-bit 720GB/sec 16GB 10.6 TFLOPs 5.3 TFLOPs N/A N/A N/A 21.2 TFLOPs N/A N/A N/A N/A 160GB/sec GP100 1344KB(24KBx56) 4096 KB 610mm2 15.3B 300W TSMC 16 nm FinFET+

Products using AmpereEdit

  • GeForce 30 series
    • GeForce RTX 3050 (GA107)
    • GeForce RTX 3050 Ti (GA107)
    • GeForce RTX 3060 (GA106)
    • GeForce RTX 3060 Ti (GA104)
    • GeForce RTX 3070 (GA104)
    • GeForce RTX 3070 Ti (GA104)
    • GeForce RTX 3080 (GA102)
    • GeForce RTX 3080 Ti (GA102)
    • GeForce RTX 3090 (GA102)
  • Nvidia Workstation GPUs (formerly Quadro)
    • RTX A2000 (mobile) (GA10?)
    • RTX A3000 (mobile) (GA104)
    • RTX A4000 (mobile) (GA104)
    • RTX A5000 (mobile) (GA104)
    • RTX A4000 (GA104)
    • RTX A5000 (GA102)
    • RTX A6000 (GA102)
  • Nvidia Data Center GPUs (formerly Tesla)
    • Nvidia A10 (GA102)
    • Nvidia A16 (4 × GA107)
    • Nvidia A30 (GA100)
    • Nvidia A40 (GA102)
    • Nvidia A100 (GA100)
    • Nvidia A100 80GB (GA100)

See alsoEdit


  1. ^ Newsroom, NVIDIA. "NVIDIA's New Ampere Data Center GPU in Full Production". NVIDIA Newsroom Newsroom.
  2. ^ "NVIDIA Ampere Architecture In-Depth". NVIDIA Developer Blog. May 14, 2020.
  3. ^ Newsroom, NVIDIA. "NVIDIA Delivers Greatest-Ever Generational Leap with GeForce RTX 30 Series GPUs". NVIDIA Newsroom Newsroom.
  4. ^ "NVIDIA GeForce Ultimate Countdown". NVIDIA.
  5. ^
  6. ^
  7. ^ "I.7. Compute Capability 8.x". Retrieved September 23, 2020.
  8. ^ B., Dominik. "Samsung's old 8nm tech at the heart of NVIDIA's monstrous Ampere cards". SamMobile. Retrieved September 19, 2020.
  9. ^ a b c d e f Smith, Ryan (May 14, 2020). "NVIDIA Ampere Unleashed: NVIDIA Announces New GPU Architecture, A100 GPU, and Accelerator". AnandTech.
  10. ^ "GeForce RTX 30 Series GPUs: Ushering In A New Era of Video Content With AV1 Decode". NVIDIA.
  11. ^ "NVIDIA A100 Tensor Core GPU Architecture" (PDF). Retrieved September 18, 2020.
  12. ^ "NVIDIA Tensor Cores: Versatility for HPC & AI". NVIDIA.
  13. ^ "Abstract".
  14. ^ a b Tom Warren; James Vincent (May 14, 2020). "Nvidia's first Ampere GPU is designed for data centers and AI, not your PC". The Verge.
  15. ^ "NVIDIA Tesla V100 tested: near unbelievable GPU power". TweakTown. September 17, 2017.

External linksEdit