Alarm fatigue or alert fatigue describes how busy workers (in the case of health care, clinicians) become desensitized to safety alerts, and as a result ignore or fail to respond appropriately to such warnings.[1] Alarm fatigue occurs in many fields, including construction[2] and mining[3] (where vehicle back-up alarms sound so frequently that they often become senseless background noise), healthcare[4] (where electronic monitors tracking clinical information such as vital signs and blood glucose sound alarms so frequently, and often for such minor reasons, that they lose the urgency and attention-grabbing power which they are intended to have), and the nuclear power field. Like crying wolf, such false alarms rob the critical alarms of the importance they deserve. Alarm management and policy are critical to prevent alarm fatigue.

Healthcare edit

The constant sounds of alarms and noises from blood pressure machines, ventilators and heart monitors causes a "tuning out" of the sounds due to the brain adjusting to stimulation. This issue is present in hospitals, in home care providers, nursing homes and other medical facilities alike. The US Food and Drug Administration cataloged 566 deaths from ignored alarms in the period 2005 to 2008.[5] The United States-based Joint Commission's sentinel event reports 80 alarm-related deaths and 13 alarm-related serious injuries over the course of a few years. On April 18, 2013, the Joint Commission issued a sentinel event alert that highlighted the widespread problem of alarm fatigue in hospitals. Their recommendations included establishing guidelines to tailor alarm settings, training all members of the clinical team on safe use of alarms, and sharing information about alarm-related incidents.[4] This alert resulted in designation in 2014 of clinical alarm system safety as a National Patient Safety Goal and it remains a goal in 2017.[6] This Goal will force hospitals to establish alarm safety as a priority, identify the most important alarms, and establish policies to manage alarms by January 2016.[7][8] ECRI Institute has listed alarms on its "Top Ten Hazards List"[9] since 2007; in 2014, alarms were listed as the number one hazard.

Unintended outcomes of alarms edit

The large number of alarms, especially of false alarms, has led to several unintended outcomes. Some consequences are disruption in patient care,[10] desensitization to alarms,[11] anxiety in hospital staff and patients,[11] sleep deprivation and depressed immune systems,[11] misuse of monitor equipment including "work-arounds" such as turning down alarm volumes or adjusting device settings,[12][13] and missed critical events.[14] Some additional outcomes include workload increase,[11] interference with communication,[14] wasted time, patient dissatisfaction,[14] and unnecessary investigations, referrals, or treatments.[14]

Solutions edit

There are many solutions proposed to reduce alarm fatigue in healthcare settings:[15]

  • Change alarm sounds to be softer and friendlier in order to improve identification of alarms by sound alone. Another recommendation is for clinicians to adjust the parameters and delays to alarms to match the patient's traits and status. However, this directly trades sensitivity for specificity.[11][14]
  • Use centralized alarms. In this approach, alarms do not fire at the bedside, but fire at a central monitoring station where a trained healthcare provider evaluates each alarm and alerts the bedside clinician if they should intervene or evaluate the patient.[4][16]
  • Adjust alarm algorithms. Currently, the alarm systems are very sensitive but not specific. This leads to a large amount of false alarms. The algorithms used can be adjusted to balance between sensitivity and specificity to limit the number of false alarms and still detect true deterioration.[17]

Child abduction edit

The amber alert system used in countries such as the United States and Canada to notify the public of a child abduction has been theorized as being susceptible to alarm fatigue.[18][19] A 2018 abduction in Thunder Bay resulted in an amber alert being sent to cell phones as far away as Ottawa, some 15 hours' drive from Thunder Bay, followed one hour later by a second alert which notified individuals that the first alert had been resolved.[20] A similar double alert occurred on a single night in February 2019, leading to concerns over alert fatigue.[21]

Public transport edit

In the New York City Subway, the Metropolitan Transportation Authority installed sirens in 2006 to discourage subway users from using emergency exits to evade fares; the sirens had little effect other than irritating passengers and were removed in 2015.[22]

Alarm fatigue has sometimes contributed to public transport disasters such as the 2009 train collision in Washington, DC, caused by a faulty track circuit which failed to detect the presence of a stopped train. Though the automatic train control system generated alerts notifying train dispatchers to the presence of such faulty circuits, the rate of such alerts was about 8,000 per week. An investigation by the US National Transportation Safety Board concluded that "the extremely high incidence of track-circuit alarms would have thoroughly desensitized [the dispatchers]".[23]

Weather edit

Some people[who?] think the large number of deaths from Hurricane Ida in New York and New Jersey may have been the result of too many warnings. Since 2012, weather alerts have been sent out to cell phones, but in 2020, federal officials set up a three-tier system so people would get this warning for the most serious situations.[24]

See also edit

References edit

  1. ^ "Alert Fatigue". September 7, 2019.
  2. ^ Blackmon, R.B.; A. K. Gramopadhye (1 June 1995). "Improving Construction Safety by Providing Positive Feedback on Backup Alarms". Journal of Construction Engineering and Management. 121 (2): 166–171. doi:10.1061/(asce)0733-9364(1995)121:2(166). ISSN 1943-7862.
  3. ^ Bliss, JP; Gilson, RD; Deaton, JE (November 1995). "Human probability matching behaviour in response to alarms of varying reliability". Ergonomics. 38 (11): 2300–12. doi:10.1080/00140139508925269. PMID 7498189.
  4. ^ a b c "The Joint Commission Sentinel Event Alert" (PDF). Medical device alarm safety in hospitals. The Patient Safety Advisory Group. Retrieved 21 October 2013.
  5. ^ Medical devices that are music to our ears could save lives
  6. ^ PDF
  7. ^ The Joint Commission. "The Joint Commission Announces 2014 National Patient Safety Goal" (PDF). Retrieved 21 October 2013.
  8. ^ Monegain, Bernie. "'Alarm Fatigue' Endangers Patients." Healthcare IT News. HIMSS Media, 9 April 2013. Web. 24 January 2014
  9. ^ "ECRI Institute Releases Top 10 Health Technology Hazards Report for 2014". Archived from the original on 2016-03-05. Retrieved 2015-09-10.
  10. ^ Healthcare Technology Foundation. "2011 National Clinical Alarms Survey" (PDF). Retrieved 21 October 2013.
  11. ^ a b c d e Borowski, M; Görges, M; Fried, R; Such, O; Wrede, C; Imhoff, M (April 2011). "Medical device alarms". Biomedizinische Technik/Biomedical Engineering. 56 (2): 73–83. doi:10.1515/bmt.2011.005. PMID 21366502. S2CID 17511189.
  12. ^ Meade, Karen; Catania, Kimberly; Lopez, Ben; Connell, Ryan (2019-04-01). "Air-in-Line Alarms: Decreasing Alarms Through Antisiphon Valve Implementation". Clinical Journal of Oncology Nursing. 23 (2): 209–211. doi:10.1188/19.CJON.209-211. PMID 30880809. S2CID 81977608.
  13. ^ Joint Commission. (2013). Medical device alarm safety in hospitals. Sentinel Event Alert, 50, 1–3.
  14. ^ a b c d e Graham, KC; Cvach, M (January 2010). "Monitor alarm fatigue: standardizing use of physiological monitors and decreasing nuisance alarms". American Journal of Critical Care. 19 (1): 28–34, quiz 35. doi:10.4037/ajcc2010651. PMID 20045845.
  15. ^ Copeland, CS (5 February 2019). "National Patient Safety Goals: Reducing the Harm Associated with Clinical Alarm Systems". Vitalacy.
  16. ^ Cantillon DJ, Loy M, Burkle A, Pengel S, Brosovich D, Hamilton A, Khot UN, Lindsay BD (2016). "Association Between Off-site Central Monitoring Using Standardized Cardiac Telemetry and Clinical Outcomes Among Non-Critically Ill Patients". JAMA. 316 (5): 519–24. doi:10.1001/jama.2016.10258. PMID 27483066.
  17. ^ Blum, JM; Tremper, KK (February 2010). "Alarms in the intensive care unit: too much of a good thing is dangerous: is it time to add some intelligence to alarms?". Critical Care Medicine. 38 (2): 702–3. doi:10.1097/ccm.0b013e3181bfe97f. PMID 20083933.
  18. ^ Snow, Robert L. (2008). Child Abduction: Prevention, Investigation, and Recovery: Prevention. Greenwood Publishing Group. ISBN 9780313347870.
  19. ^ Wood, Daniel B. (2017-08-07). "Amber alert fatigue? Alerts on cell phones set Californians buzzing".
  20. ^ "Mobile users warn of 'apathy' after alerts ring out for Thunder Bay abduction". CBC News. 2018-05-14.
  21. ^ "More research needed to determine if alert fatigue is true, says prof". CBC News. 2019-02-16.
  22. ^ Matt Flegenheimer, Exit Alarms in the Subways Are Silenced by the M.T.A., New York Times (January 1, 2015).
  23. ^ "July 27, 2010 Railroad Accident Report – Collision of Two Washington Metropolitan Area Transit Authority Metrorail Trains Near Fort Totten Station Washington, D.C. June 22, 2009". NTSB. July 27, 2010. Retrieved April 10, 2012.
  24. ^ Calvan, Bobby Caina (September 5, 2021). "As flood alerts lit up phones, did 'warning fatigue' set in?". WHYY. Retrieved September 5, 2021 – via Associated Press.