# 8-cubic honeycomb

(Redirected from 8-cube honeycomb)
8-cubic honeycomb
(no image)
Type Regular 8-honeycomb
Uniform 8-honeycomb
Family Hypercube honeycomb
Schläfli symbol {4,36,4}
{4,35,31,1}
t0,8{4,36,4}
{∞}8
Coxeter-Dynkin diagrams

8-face type {4,36}
7-face type {4,35}
6-face type {4,34}
5-face type {4,33}
4-face type {4,32}
Cell type {4,3}
Face type {4}
Face figure {4,3}
(octahedron)
Edge figure 8 {4,3,3}
(16-cell)
Vertex figure 256 {4,36}
(8-orthoplex)
Coxeter group [4,36,4]
Dual self-dual
Properties vertex-transitive, edge-transitive, face-transitive, cell-transitive

The 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 8-space.

It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space, and the tesseractic honeycomb of 4-space.

There are many different Wythoff constructions of this honeycomb. The most symmetric form is regular, with Schläfli symbol {4,36,4}. Another form has two alternating hypercube facets (like a checkerboard) with Schläfli symbol {4,35,31,1}. The lowest symmetry Wythoff construction has 256 types of facets around each vertex and a prismatic product Schläfli symbol {∞}8.

## Related honeycombs

The [4,36,4],                  , Coxeter group generates 511 permutations of uniform tessellations, 271 with unique symmetry and 270 with unique geometry. The expanded 8-cubic honeycomb is geometrically identical to the 8-cubic honeycomb.

The 8-cubic honeycomb can be alternated into the 8-demicubic honeycomb, replacing the 8-cubes with 8-demicubes, and the alternated gaps are filled by 8-orthoplex facets.

### Quadrirectified 8-cubic honeycomb

A quadrirectified 8-cubic honeycomb,          , contains all trirectified 8-orthoplex facets and is the Voronoi tessellation of the D8* lattice. Facets can be identically colored from a doubled ${\displaystyle {\tilde {C}}_{8}}$ ×2, [[4,36,4]] symmetry, alternately colored from ${\displaystyle {\tilde {C}}_{8}}$ , [4,36,4] symmetry, three colors from ${\displaystyle {\tilde {B}}_{8}}$ , [4,35,31,1] symmetry, and 4 colors from ${\displaystyle {\tilde {D}}_{8}}$ , [31,1,34,31,1] symmetry.

## References

• Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs
• Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
• (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Fundamental convex regular and uniform honeycombs in dimensions 2-9
${\displaystyle {\tilde {A}}_{n-1}}$  ${\displaystyle {\tilde {C}}_{n-1}}$  ${\displaystyle {\tilde {B}}_{n-1}}$  ${\displaystyle {\tilde {D}}_{n-1}}$  ${\displaystyle {\tilde {G}}_{2}}$  / ${\displaystyle {\tilde {F}}_{4}}$  / ${\displaystyle {\tilde {E}}_{n-1}}$
{3[3]} δ3 3 3 Hexagonal
{3[4]} δ4 4 4
{3[5]} δ5 5 5 24-cell honeycomb
{3[6]} δ6 6 6
{3[7]} δ7 7 7 222
{3[8]} δ8 8 8 133331
{3[9]} δ9 9 9 152251521
{3[10]} δ10 10 10
{3[n]} δn n n 1k22k1k21