Open main menu

Wikipedia β

The 4.2 kiloyear BP aridification event was one of the most severe climatic events of the Holocene period.[1] Starting in about 2200 BC, it probably lasted the entire 22nd century BC. The drought may have initiated southeastward habitat tracking within the Indus Valley Civilization.[2]

The 4.2 kiloyear BP event has been hypothesised to have caused the collapse of the Old Kingdom in Egypt as well as the Akkadian Empire in Mesopotamia, and the Liangzhu culture in the lower Yangtze River area.[3] However, this theory has been criticised by archaeologists, with political causes for the collapse of these polities thought to be more probable.



Central Greenland reconstructed temperature. Unlike the 8.2 kiloyear event, the 4.2 kiloyear event has no prominent signal in the Gisp2 ice core that has an onset at 4.2 ka BP.

A phase of intense aridity about 4.2 ka BP is recorded across North Africa,[4] the Middle East,[5] the Red Sea,[6] the Arabian peninsula,[7] the Indian subcontinent,[2] and midcontinental North America.[8] Glaciers throughout the mountain ranges of western Canada advanced at about this time.[9] Evidence has also been found in an Italian cave flowstone,[10] the Kilimanjaro Ice sheet,[11] and in Andean glacier ice.[12] The onset of the aridification in Mesopotamia about 4100 BP also coincided with a cooling event in the North Atlantic, known as Bond event 3.[1][13][14] Despite this, evidence for the 4.2 kyr event in northern Europe is ambiguous, suggesting the origin and impact of this event is spatially complex.[15]

Ancient EgyptEdit

In c. 2150 BC, the Old Kingdom was hit by a series of exceptionally low Nile floods. It has been suggested that may have impacted the collapse of the centralised government in ancient Egypt.[16] Contemporary texts claim that famines, social disorder and fragmentation subsequently occurred. There may however be a strong element of political bias to these writings since the Egyptian elite believed the stability of Egypt was dependent on a unified state, and they would have been motivated to present decentralisation as disastrous. After a phase of rehabilitation and restoration of order in various provinces, Egypt was eventually reunified within a new paradigm of kingship. The process of recovery depended on capable provincial administrators, a more formalised justice system, irrigation projects, and an administrative reform.[citation needed]


The aridification of Mesopotamia may have been related to the onset of cooler sea-surface temperatures in the North Atlantic (Bond event 3), as analysis of the modern instrumental record shows that large (50%) interannual reductions in Mesopotamian water supply result when subpolar northwest Atlantic sea surface temperatures are anomalously cool.[17] The headwaters of the Tigris and Euphrates Rivers are fed by elevation-induced capture of winter Mediterranean rainfall.

The Akkadian Empire, in 2300 BC, was the second civilization to subsume independent societies into a single state (the first being ancient Egypt around 3100 BC). It has been claimed that the collapse of the state was influenced by a wide-ranging, centuries-long drought.[18] Archaeological evidence documents widespread abandonment of the agricultural plains of northern Mesopotamia and dramatic influxes of refugees into southern Mesopotamia, around 2170 BC.[19] A 180-km-long wall, the "Repeller of the Amorites," was built across central Mesopotamia to stem nomadic incursions to the south. Around 2150 BC, the Gutian people, who originally inhabited the Zagros Mountains, defeated the demoralised Akkadian army, took Akkad, and destroyed it around 2115 BC. Widespread agricultural change in the Near East is visible at the end of the 3rd millennium BC.[20]

Resettlement of the northern plains by smaller sedentary populations occurred near 1900 BC, three centuries after the collapse.[19]

Arabian peninsulaEdit

In the Persian Gulf region, there is a sudden change in settlement pattern, style of pottery and tombs at this time. The 22nd century BC drought marks the end of the Umm an-Nar Culture and the change to the Wadi Suq period.[7]


On the Iberian peninsula, the construction of motillas-type settlements in the period after 2200 BCE is believed to be the consequence of the severe aridification that affected this area.

According to Moreno et al., who reported the first palaeohydrogeological interdisciplinary research in La Mancha, Spain,

"Recent studies show that the "motilla" sites from the Bronze Age in La Mancha may be the most ancient system of groundwater collection in the Iberian Peninsula.... These were built during the Climatic Event 4.2 ka cal BP in a time of environmental stress due to a period of severe, prolonged drought."[21]

The authors' analysis verified a relationship between the geological substrate and the spatial distribution of the motillas.


The drought may have caused the collapse of Neolithic Cultures around Central China during the late third millennium BC.[22] At the same time, the middle reaches of the Yellow River saw a series of extraordinary floods.[23] In the Yishu River Basin, the flourishing Longshan culture was hit by a cooling that made the paddies shortfall in output or even no seeds were gathered. The scarcity in natural resource led to substantial decrease in population and subsequent drop in archaeological sites.[24] In about 2000 BC, Longshan was displaced by the Yueshi culture, which was relatively underdeveloped.

See alsoEdit


  1. ^ a b deMenocal, Peter B. (2001). "Cultural Responses to Climate Change During the Late Holocene". Science. 292 (5517): 667–673. Bibcode:2001Sci...292..667D. PMID 11303088. doi:10.1126/science.1059827. 
  2. ^ a b Staubwasser, M.; et al. (2003). "Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability". Geophysical Research Letters. 30 (8): 1425. Bibcode:2003GeoRL..30h...7S. doi:10.1029/2002GL016822. 
  3. ^ Gibbons, Ann (1993). "How the Akkadian Empire Was Hung Out to Dry". Science. 261 (5124): 985. Bibcode:1993Sci...261..985G. PMID 17739611. doi:10.1126/science.261.5124.985. 
  4. ^ Gasse, Françoise; Van Campo, Elise (1994). "Abrupt post-glacial climate events in West Asia and North Africa monsoon domains". Earth and Planetary Science Letters. 126 (4): 435–456. Bibcode:1994E&PSL.126..435G. doi:10.1016/0012-821X(94)90123-6. 
  5. ^ Bar-Matthews, Miryam; Ayalon, Avner; Kaufman, Aaron (1997). "Late Quaternary Paleoclimate in the Eastern Mediterranean Region from Stable Isotope Analysis of Speleothems at Soreq Cave, Israel". Quaternary Research. 47 (2): 155–168. Bibcode:1997QuRes..47..155B. doi:10.1006/qres.1997.1883. 
  6. ^ Arz, Helge W.; et al. (2006). "A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea". Quaternary Research. 66 (3): 432–441. Bibcode:2006QuRes..66..432A. doi:10.1016/j.yqres.2006.05.006. 
  7. ^ a b Parker, Adrian G.; et al. (2006). "A record of Holocene climate change from lake geochemical analyses in southeastern Arabia" (PDF). Quaternary Research. 66 (3): 465–476. Bibcode:2006QuRes..66..465P. doi:10.1016/j.yqres.2006.07.001. Archived from the original (PDF) on October 29, 2008. 
  8. ^ Booth, Robert K.; et al. (2005). "A severe centennial-scale drought in midcontinental North America 4200 years ago and apparent global linkages". The Holocene. 15 (3): 321–328. doi:10.1191/0959683605hl825ft. 
  9. ^ Menounos, B.; et al. (2008). "Western Canadian glaciers advance in concert with climate change c. 4.2 ka". Geophysical Research Letters. 35 (7): L07501. Bibcode:2008GeoRL..3507501M. doi:10.1029/2008GL033172. 
  10. ^ Drysdale, Russell; et al. (2005). "Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone". Geology. 34 (2): 101–104. Bibcode:2006Geo....34..101D. doi:10.1130/G22103.1. 
  11. ^ Thompson,L.G; et al. (2002). "Kilimanjaro Ice Core Records Evidence of Holocene Climate Change in Tropical Africa". Science. 298: 589–93. Bibcode:2002Sci...298..589T. PMID 12386332. doi:10.1126/science.1073198. 
  12. ^ Davis, Mary E.; Thompson, Lonnie G. (2006). "An Andean ice-core record of a Middle Holocene mega-drought in North Africa and Asia" (PDF). Annals of Glaciology. 43: 34–41. Bibcode:2006AnGla..43...34D. doi:10.3189/172756406781812456. Archived from the original (PDF) on July 11, 2007. 
  13. ^ Bond, G.; et al. (1997). "A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates" (PDF). Science. 278 (5341): 1257–1266. Bibcode:1997Sci...278.1257B. doi:10.1126/science.278.5341.1257. Archived from the original (PDF) on 2008-02-27. 
  14. ^ "Two examples of abrupt climate change". Lamont-Doherty Earth Observatory. Archived from the original on 2007-08-23. 
  15. ^ Roland, Thomas P; et al. (2014). "Was there a ‘4.2 ka event’ in Great Britain and Ireland? Evidence from the peatland record". Quaternary Science Reviews. 83: 11–27. Bibcode:2014QSRv...83...11R. doi:10.1016/j.quascirev.2013.10.024. 
  16. ^ Stanley, Jean-Daniel; et al. (2003). "Nile flow failure at the end of the Old Kingdom, Egypt: Strontium isotopic and petrologic evidence". Geoarchaeology. 18 (3): 395–402. doi:10.1002/gea.10065. 
  17. ^ Cullen, Heidi M.; deMenocal, Peter B. (2000). "North Atlantic influence on Tigris-Euphrates streamflow". International Journal of Climatology. 20 (8): 853–863. Bibcode:2000IJCli..20..853C. doi:10.1002/1097-0088(20000630)20:8<853::AID-JOC497>3.0.CO;2-M. 
  18. ^ Kerr, Richard A. (1998). "Sea-Floor Dust Shows Drought Felled Akkadian Empire". Science. 279 (5349): 325–326. Bibcode:1998Sci...279..325K. doi:10.1126/science.279.5349.325. 
  19. ^ a b Weiss, H; et al. (1993). "The Genesis and Collapse of Third Millennium North Mesopotamian Civilization". Science. 261 (5124): 995–1004. Bibcode:1993Sci...261..995W. PMID 17739617. doi:10.1126/science.261.5124.995. 
  20. ^ Riehl, S. (2008). "Climate and agriculture in the ancient Near East: a synthesis of the archaeobotanical and stable carbon isotope evidence". Vegetation History and Archaeobotany. 17 (1): 43–51. doi:10.1007/s00334-008-0156-8. 
  21. ^ Mejías Moreno, M., Benítez de Lugo Enrich, L., Pozo Tejado, J. del y Moraleda Sierra, J. 2014. Los primeros aprovechamientos de aguas subterráneas en la Península Ibérica. Las motillas de Daimiel en la Edad del Bronce de La Mancha. Boletín Geológico y Minero, 125 (4): 455–474 ISSN 0366-0176
  22. ^ Wu, Wenxiang; Liu, Tungsheng (2004). "Possible role of the "Holocene Event 3" on the collapse of Neolithic Cultures around the Central Plain of China". Quaternary International. 117 (1): 153–166. Bibcode:2004QuInt.117..153W. doi:10.1016/S1040-6182(03)00125-3. 
  23. ^ Chun Chang Huang; et al. (2011). "Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China". Quaternary Science Reviews. 30 (3–4): 460–468. Bibcode:2011QSRv...30..460H. doi:10.1016/j.quascirev.2010.12.007. 
  24. ^ Gao, Huazhong; Zhu, Cheng; Xu, Weifeng (2007). "Environmental change and cultural response around 4200 cal. yr BP in the Yishu River Basin, Shandong". Journal of Geographical Sciences. 17 (3): 285–292. doi:10.1007/s11442-007-0285-5. 

Further readingEdit

  • Weiss, H., ed. (2012). Seven Generations Since the Fall of Akkad. Wiesbaden: Harrassowitz. ISBN 9783447068239. 

External linksEdit