Schwarz–Christoffel mapping

In complex analysis, a Schwarz–Christoffel mapping is a conformal map of the upper half-plane or the complex unit disk onto the interior of a simple polygon. Such a map is guaranteed to exist by the Riemann mapping theorem (stated by Bernhard Riemann in 1851); the Schwarz–Christoffel formula provides an explicit construction. They were introduced independently by Elwin Christoffel in 1867 and Hermann Schwarz in 1869.

Schwarz–Christoffel mappings are used in potential theory and some of its applications, including minimal surfaces, hyperbolic art, and fluid dynamics.

Definition edit

Consider a polygon in the complex plane. The Riemann mapping theorem implies that there is a biholomorphic mapping f from the upper half-plane

 

to the interior of the polygon. The function f maps the real axis to the edges of the polygon. If the polygon has interior angles  , then this mapping is given by

 

where   is a constant, and   are the values, along the real axis of the   plane, of points corresponding to the vertices of the polygon in the   plane. A transformation of this form is called a Schwarz–Christoffel mapping.

The integral can be simplified by mapping the point at infinity of the   plane to one of the vertices of the   plane polygon. By doing this, the first factor in the formula becomes constant and so can be absorbed into the constant  . Conventionally, the point at infinity would be mapped to the vertex with angle  .

In practice, to find a mapping to a specific polygon one needs to find the   values which generate the correct polygon side lengths. This requires solving a set of nonlinear equations, and in most cases can only be done numerically.[1]

Example edit

Consider a semi-infinite strip in the z plane. This may be regarded as a limiting form of a triangle with vertices P = 0, Q = π i, and R (with R real), as R tends to infinity. Now α = 0 and β = γ = π2 in the limit. Suppose we are looking for the mapping f with f(−1) = Q, f(1) = P, and f(∞) = R. Then f is given by

 

Evaluation of this integral yields

 

where C is a (complex) constant of integration. Requiring that f(−1) = Q and f(1) = P gives C = 0 and K = 1. Hence the Schwarz–Christoffel mapping is given by

 

This transformation is sketched below.

 
Schwarz–Christoffel mapping of the upper half-plane to the semi-infinite strip

Other simple mappings edit

Triangle edit

A mapping to a plane triangle with interior angles   and   is given by

 

which can be expressed in terms of hypergeometric functions, more precisely incomplete beta functions.

Square edit

The upper half-plane is mapped to the square by

 

where F is the incomplete elliptic integral of the first kind.

General triangle edit

The upper half-plane is mapped to a triangle with circular arcs for edges by the Schwarz triangle map.

See also edit

References edit

  1. ^ Driscoll, Toby. "Schwarz-Christoffel mapping". www.math.udel.edu. Retrieved 2021-05-17.

Further reading edit

An analogue of SC mapping that works also for multiply-connected is presented in: Case, James (2008), "Breakthrough in Conformal Mapping" (PDF), SIAM News, 41 (1).

External links edit