Rankine Lecture

(Redirected from Rankine Lecturers)

The Rankine lecture is an annual lecture organised by the British Geotechnical Association named after William John Macquorn Rankine, an early contributor to the theory of soil mechanics.

This should not be confused with the biennial BGA Géotechnique Lecture.

The Rankine Lecture is held in March each year. In even-numbered years, the lecturer is from the UK. In odd-numbered years, the lecturer is from outside the UK. Each lecture is usually published[1] in Géotechnique.[2]

List of Rankine Lecturers edit

No YEAR LECTURER SUBJECT Géotechnique AFFILIATION
1 1961 A. Casagrande Control of seepage through foundations and abutments of dams[3] 11(3) 161-181 Harvard University
2 1962 L. F. Cooling Field measurements in soil mechanics[4] 12(2) 77-103 Building Research Establishment
3 1963 A. Mayer Recent work in rock mechanics[5] 13(2) 99-118
4 1964 A. W. Skempton Long-term stability of clay slopes[6] 14(2) 77-101 Imperial College
5 1965 N. M. Newmark Effects of earthquakes on dams and embankments[7] 15(2) 139-159 University of Illinois at Urbana-Champaign
6 1966 A. W. Bishop The strength of soils as engineering materials[8] 16(2) 91-128 Imperial College
7 1967 L. Bjerrum Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings[9] 17(2) 83-117 Norwegian Geotechnical Institute
8 1968 R. Glossop The rise of geotechnology and its influence on engineering practice[10] 18(2) 107-150 John Mowlem and Co., Ltd
9 1969 R. B. Peck Advantages and limitations of the observational method in applied soil mechanics[11] 19(2) 171-187 University of Illinois
10 1970 K. H. Roscoe The influence of strains in soil mechanics[12] 20(2) 129-170 University of Cambridge
11 1971 J. C. Jaeger Friction of rocks and stability of rock slopes[13] 21(2) 97-134 Australian National University, Canberra
12 1972 P. W. Rowe The relevance of soil fabric to site investigation practice[14] 22(2) 195-300 University of Manchester
13 1973 T. W. Lambe Predictions in soil engineering[15] 23(2) 151-201 Massachusetts Institute of Technology
14 1974 R. E. Gibson The analytical method in soil mechanics[16] 24(2) 115-139 King's College, London
15 1975 J. Kérisel Old structures in relation to soil conditions[17] 25(3) 433-482 Simecsol Études
16 1976 A. C. Meigh The Triassic rocks, with particular reference to predicted and observed performance of some major foundations[18] 26(3) 393-451 Soil Mechanics Limited
17 1977 V. F. B. de Mello Reflections on design decisions of practical significance to embankment dams[19] 27(3) 281-354 Private Consultant, Brazil
18 1978 W. H. Ward Ground supports for tunnels in weak rocks[20] 28(2) 135-170 Building Research Establishment
19 1979 H. Bolton Seed Considerations in the earthquake-resistant design of earth and rockfill dams[21] 29(3) 215-262 University of California, Berkeley
20 1980 A. N. Schofield Cambridge geotechnical centrifuge operations[22] 30(3) 227-267 University of Cambridge
21 1981 N. R. Morgenstern Geotechnical engineering and frontier resource development[23] 31(3) 305-365 University of Alberta
22 1982 D. J. Henkel Geology, geomorphology and geotechnics[24] 32(3) 175-194 Ove Arup & Partners
23 1983 E. Hoek Strength of jointed rock masses[25] 33(3) 187-222 Golder Associates, Vancouver
24 1984 C. P. Wroth The interpretation of in situ soil tests[26] 34(4) 449-488 University of Oxford
25 1985 N. Janbu Soil models in offshore engineering[27] 35(3) 241-280 Norwegian Institute of Technology
26 1986 A. D. M. Penman On the embankment dam[28] 36(3) 303-347 Geotechnical Engineering Consultant, Harpenden
27 1987 R. F. Scott Failure[29] 37(4) 423-466 California Institute of Technology
28 1988 H. B. Sutherland Uplift resistance in soils[30] 38(4) 493-515 University of Glasgow Trust
29 1989 H. G. Poulos Pile behaviour - theory and application[31] 39(3) 365-415 University of Sydney
30 1990 J. B. Burland On the compressibility and shear strength of natural clays[32] 40(3) 329-378 Imperial College
31 1991 J. K. Mitchell Conduction phenomena: from theory to geotechnical practice[33] 41(3) 299-339 University of California, Berkeley
32 1992 B. Simpson Retaining structures: displacement and design[34] 42(4) 541-576 Ove Arup & Partners
33 1993 K. Ishihara Liquefaction and flow failure during earthquakes[35] 43(3) 351-414 University of Tokyo
34 1994 P. R. Vaughan Assumption, prediction and reality in geotechnical engineering[36] 44(4) 573-608 Imperial College
35 1995 R. E. Goodman Block theory and its application[37] 45(3) 383-422 University of California, Berkeley
36 1996 S. F. Brown Soil mechanics in pavement engineering[38] 46(3) 383-425 University of Nottingham
37 1997 G. E. Blight Interactions between the atmosphere and the Earth[39] 47(4) 715-766 University of Witwatersrand
38 1998 D. W. Hight Soil characterisation: the importance of structure and anisotropy - Imperial College
39 1999 S. Leroueil Natural slopes and cuts: movement and failure mechanisms[40][41] 51(3) 197-243 Université Laval, Ste-Foy, Québec
40 2000 J. H. Atkinson Non-linear soil stiffness in routine design[42][43] 50(5) 487-507 City University, London
41 2001 H. Brandl Energy foundations and other thermo-active ground structures[44][45] 56(2) 81-122 Vienna University of Technology, Austria
42 2002 D. M. Potts Numerical analysis: a virtual dream or practical reality?[46][47] 53(6) 535-572 Imperial College
43 2003 M. F. Randolph Science and empiricism in pile foundation design[48][49] 53(10) 847-874 University of Western Australia
44 2004 N. N. Ambraseys Engineering, seismology and soil mechanics - Imperial College
45 2005 R. K. Rowe Long term performance of contaminant barrier systems[50][51] 55(9) 631-678 Queen's University at Kingston, Ontario, Canada
46 2006 R. J. Mair Tunnelling and geotechnics - new horizons[52][53] 58(9) 695-736 University of Cambridge
47 2007 A. Gens Soil-environment interactions in geotechnical engineering[54][55] 60(1) 3-74 Universitat Politècnica de Catalunya
48 2008 J. A. Charles The engineering behaviour of fill - the use, misuse and disuse of case histories[56][57] 58(7) 541-570 Building Research Establishment
49 2009 T. D. O'Rourke Geohazards & Large Geographically Distributed Systems[58][59] 60(7) 505-543 Cornell University
50 2010 C. R. I. Clayton Stiffness at small strain - research and practice[60][61] 61(1) 5-37 University of Southampton
51 2011 S. W. Sloan Geotechnical Stability Analysis[62][63] 63(7) 531-571 University of Newcastle, Australia
52 2012 M. D. Bolton Performance-based design in geotechnical engineering University of Cambridge
53 2013 M. Jamiolkowski Soil Mechanics and the observational method: Challenges at the Zelazny Most copper tailings disposal facility[64] 64(8) 590-619 Politecnico di Torino
54 2014 G. T. Houlsby Interactions in Offshore Foundation Design[65][66][67] 66(10) 791-825 University of Oxford
55 2015 S. Lacasse Hazard, Risk and Reliability in Geotechnical Practice[68] Norwegian Geotechnical Institute
56 2016 R. Jardine Geotechnics and Energy[69][70] 70(1) 3-59 Imperial College
57 2017 E. Alonso Triggering and Motion of Landslides 71(1) 3-59 Universitat Politècnica de Catalunya
58 2018 N. O'Riordan Dynamic soil-structure interaction[71] ARUP
59 2019 G. Gazetas Benefits of Unconventional Seismic Foundation Design[72][73] National Technical University of Athens
60 2022 (2020) S. Jefferis The Unusual and the Unexpected in Geotechnical Engineering [74][75] Environmental Geotechnics Limited
61 2023 John P. Carter[76][77] Constitutive Modelling in Computational Geomechanics [78] University of Newcastle, Australia
62 2024 Lidija Zdravković[79] [80] Imperial College London
63 2025 Kenichi Soga

See also edit

External links edit

References edit

  1. ^ Géotechnique Rankine-lecture papers
  2. ^ Géotechnique
  3. ^ Casagrande, A. (1961). "Control of Seepage through Foundations and Abutments of Dams*". Géotechnique. 11 (3): 161–182. doi:10.1680/geot.1961.11.3.161.
  4. ^ Cooling, L. F. (1962). "Field Measurements in Soil Mechanics". Géotechnique. 12 (2): 77–104. doi:10.1680/geot.1962.12.2.77.
  5. ^ Mayer, A. (1963). "Recent Work in Rock Mechanics". Géotechnique. 13 (2): 99–120. doi:10.1680/geot.1963.13.2.99.
  6. ^ Skempton, A. W. (1964). "Long-term stability of clay slopes". Géotechnique. 14 (2): 77–102. doi:10.1680/geot.1964.14.2.77.
  7. ^ Newmark, N. M. (1965). "Effects of Earthquakes on Dams and Embankments". Géotechnique. 15 (2): 139–160. doi:10.1680/geot.1965.15.2.139.
  8. ^ Bishop, A. W. (1966). "The Strength of Soils as Engineering Materials". Géotechnique. 16 (2): 91–130. doi:10.1680/geot.1966.16.2.91.
  9. ^ Bjerrum, L. (1967). "Engineering Geology of Norwegian Normally-Consolidated Marine Clays as Related to Settlements of Buildings". Géotechnique. 17 (2): 83–118. doi:10.1680/geot.1967.17.2.83.
  10. ^ Glossop, R. (1968). "The Rise of Geotechnology and its Influence on Engineering Practice". Géotechnique. 18 (2): 107–150. doi:10.1680/geot.1968.18.2.107.
  11. ^ Peck, R. B. (1969). "Advantages and Limitations of the Observational Method in Applied Soil Mechanics". Géotechnique. 19 (2): 171–187. doi:10.1680/geot.1969.19.2.171.
  12. ^ Roscoe, K. H. (1970). "The Influence of Strains in Soil Mechanics". Géotechnique. 20 (2): 129–170. doi:10.1680/geot.1970.20.2.129.
  13. ^ Jaeger, J. C. (1971). "Friction of Rocks and Stability of Rock Slopes". Géotechnique. 21 (2): 97–134. doi:10.1680/geot.1971.21.2.97.
  14. ^ Rowe, P. W. (1972). "The relevance of soil fabric to site investigation practice". Géotechnique. 22 (2): 195–300. doi:10.1680/geot.1972.22.2.195.
  15. ^ Lambe, T. W. (1973). "Predictions in soil engineering". Géotechnique. 23 (2): 151–202. doi:10.1680/geot.1973.23.2.151.
  16. ^ Gibson, R. E. (1974). "The analytical method in soil mechanics". Géotechnique. 24 (2): 115–140. doi:10.1680/geot.1974.24.2.115.
  17. ^ Kérisel, J. (1975). "Old structures in relation to soil conditions". Géotechnique. 25 (3): 433–483. doi:10.1680/geot.1975.25.3.433.
  18. ^ Meigh, A. C. (1976). "The Triassic rocks, with particular reference to predicted and observed performance of some major foundations". Géotechnique. 26 (3): 393–452. doi:10.1680/geot.1976.26.3.393.
  19. ^ de Mello, V. F. B. (1977). "Reflections on design decisions of practical significance to embankment dams". Géotechnique. 27 (3): 281–355. doi:10.1680/geot.1977.27.3.281.
  20. ^ Ward, W. H. (1978). "Ground supports for tunnels in weak rocks". Géotechnique. 28 (2): 135–136. doi:10.1680/geot.1978.28.2.135.
  21. ^ Bolton Seed, H. (1979). "Considerations in the earthquake-resistant design of earth and rockfill dams". Géotechnique. 29 (3): 215–263. doi:10.1680/geot.1979.29.3.215.
  22. ^ Schofield, A. N. (1980). "Cambridge Geotechnical Centrifuge Operations". Géotechnique. 30 (3): 227–268. doi:10.1680/geot.1980.30.3.227.
  23. ^ Morgenstern, N. R. (1981). "Geotechnical engineering and frontier resource development". Géotechnique. 31 (3): 305–365. doi:10.1680/geot.1981.31.3.305.
  24. ^ Henkel, D.J. (1982). "Geology, geomorphology and geotechnics". Géotechnique. 32 (3): 175–194. doi:10.1680/geot.1982.32.3.175.
  25. ^ Hoek, E. (1984). "Strength of jointed rock masses". Géotechnique. 34 (3): 187–223. doi:10.1680/geot.1983.33.3.187.
  26. ^ Wroth, C.P. (1984). "The interpretation of in situ soil tests". Géotechnique. 34 (4): 449–489. doi:10.1680/geot.1984.34.4.449.
  27. ^ Janbu, N. (1985). "Soil models in offshore engineering". Géotechnique. 35 (3): 241–281. doi:10.1680/geot.1985.35.3.241.
  28. ^ Penman, A.D.M. (1986). "On the embankment dam". Géotechnique. 36 (3): 303–348. doi:10.1680/geot.1986.36.3.303.
  29. ^ Scott, R.F. (1987). "Failure". Géotechnique. 37 (4): 423–466. doi:10.1680/geot.1987.37.4.423.
  30. ^ Sutherland, H.B. (1988). "Uplift resistance in soils". Géotechnique. 38 (4): 493–516. doi:10.1680/geot.1988.38.4.493.
  31. ^ Poulos, H. G. (1989). "Pile behaviour—theory and application". Géotechnique. 39 (3): 365–415. doi:10.1680/geot.1989.39.3.365.
  32. ^ Burland, J. B. (1990). "On the compressibility and shear strength of natural clays". Géotechnique. 40 (3): 329–378. doi:10.1680/geot.1990.40.3.329.
  33. ^ Mitchell, J. K. (1991). "Conduction phenomena: from theory to geotechnical practice". Géotechnique. 41 (3): 299–340. doi:10.1680/geot.1991.41.3.299.
  34. ^ Simpson, B. (1992). "Retaining structures: Displacement and design". Géotechnique. 42 (4): 541–576. doi:10.1680/geot.1992.42.4.541.
  35. ^ Ishihara, K. (1993). "Liquefaction and flow failure during earthquakes". Géotechnique. 43 (3): 351–451. doi:10.1680/geot.1993.43.3.351.
  36. ^ Vaughan, P.R. (1994). "Assumption, prediction and reality in geotechnical engineering". Géotechnique. 54 (5): 573–609. doi:10.1680/geot.1994.44.4.573.
  37. ^ Goodman, R. E. (1995). "Block theory and its application". Géotechnique. 45 (3): 383–423. doi:10.1680/geot.1995.45.3.383.
  38. ^ Brown, S. F. (1996). "The Rankine Lecture". Géotechnique. 46 (3): 381–382. doi:10.1680/geot.1996.46.3.381.
  39. ^ Blight, G. E. (1997). "The Rankine Lecture". Géotechnique. 47 (4): 713–767. doi:10.1680/geot.1997.47.4.713.
  40. ^ "Introduction for the 39th Rankine Lecture". Géotechnique. 51 (3): 195. 2001. doi:10.1680/geot.2001.51.3.195.
  41. ^ Leroueil, S. (2001). "Natural slopes and cuts: Movement and failure mechanisms". Géotechnique. 51 (3): 197–243. doi:10.1680/geot.2001.51.3.197.
  42. ^ "Introduction for the 40th Rankine Lecture". Géotechnique. 50 (5): 485–486. 2000. doi:10.1680/geot.2000.50.5.485.
  43. ^ Atkinson, J. H. (2000). "Non-linear soil stiffness in routine design". Géotechnique. 50 (5): 487–508. doi:10.1680/geot.2000.50.5.487.
  44. ^ "Introduction for 41st Rankine Lecture 21 March 2001". Géotechnique. 56 (2): 79. 2006. doi:10.1680/geot.2006.56.2.79.
  45. ^ Brandl, H. (2006). "Energy foundations and other thermo-active ground structures". Géotechnique. 56 (2): 81–122. doi:10.1680/geot.2006.56.2.81.
  46. ^ "Introduction for the 42nd Rankine Lecture". Géotechnique. 53 (6): 533–534. 2003. doi:10.1680/geot.2003.53.6.533.
  47. ^ Potts, D. M. (2003). "Numerical analysis: A virtual dream or practical reality?". Géotechnique. 53 (6): 535–573. doi:10.1680/geot.2003.53.6.535.
  48. ^ "Introduction for 43rd Rankine Lecture 19 March 2003". Géotechnique. 53 (10): 845–846. 2003. doi:10.1680/geot.2003.53.10.845.
  49. ^ Randolph, M. F. (2003). "Science and empiricism in pile foundation design". Géotechnique. 53 (10): 847–875. doi:10.1680/geot.2003.53.10.847.
  50. ^ "Introduction for 45th Rankine Lecture 23 March 2005". Géotechnique. 55 (9): 629–630. 2005. doi:10.1680/geot.2005.55.9.629.
  51. ^ Rowe, R. K. (2005). "Long term performance of contaminant barrier systems". Géotechnique. 55 (9): 631–678. doi:10.1680/geot.2005.55.9.631.
  52. ^ "Introduction for the 46th Rankine Lecture". Géotechnique. 58 (9): 693–694. 2008. doi:10.1680/geot.2008.58.9.693.
  53. ^ Mair, R. J. (2008). "Tunnelling and geotechnics: New horizons". Géotechnique. 58 (9): 695–736. doi:10.1680/geot.2008.58.9.695.
  54. ^ "Introduction for 47th Rankine Lecture 21 March 2007". Géotechnique. 60 (1): 1. 2010. doi:10.1680/geot.9.B.011.
  55. ^ Gens, A. (2010). "Soil-environment interactions in geotechnical engineering". Géotechnique. 60 (1): 3–74. doi:10.1680/geot.9.P.109.
  56. ^ "Introduction for 48th Rankine Lecture 19 March 2008". Géotechnique. 58 (7): 539. 2008. doi:10.1680/geot.2008.58.7.539.
  57. ^ Charles, J. A. (2008). "The engineering behaviour of fill - the use, misuse and disuse of case histories". Géotechnique. 58 (7): 541. doi:10.1680/geot.2008.58.7.541.
  58. ^ O'Rourke, Tom (2010). "Introduction for the 49th Rankine Lecture 18th March 2009". Géotechnique. 60 (7): 503–504. doi:10.1680/geot.2010.60.7.503.
  59. ^ O'Rourke, T. D. (2010). "Geohazards and large, geographically distributed systems". Géotechnique. 60 (7): 505–543. doi:10.1680/geot.2010.60.7.505.
  60. ^ "Introduction for the 50th Rankine Lecture 17 March 2010". Géotechnique. 61 (1): 3–4. 2011. doi:10.1680/geot.2011.61.1.3.
  61. ^ Clayton, C. R. I. (2011). "Stiffness at small strain - research and practice". Géotechnique. 61 (1): 5–37. doi:10.1680/geot.2011.61.1.5.
  62. ^ "Introduction for the 51st Rankine Lecture". Géotechnique. 63 (7): 530. 2011. doi:10.1680/geot.12.RL.002.
  63. ^ Sloan, S. W. (2013). "Geotechnical stability analysis". Géotechnique. 63 (7): 531–571. doi:10.1680/geot.12.RL.001. hdl:1959.13/1060002.
  64. ^ Jamiolkowski, M. (2014). "Soil Mechanics and the observational method: Challenges at the Zelazny Most copper tailings disposal facility". Géotechnique. 64 (8): 590–618. doi:10.1680/geot.14.RL.002.
  65. ^ "Introduction for the 54th Rankine Lecture". Géotechnique. 66 (10): 789–790. 2016. doi:10.1680/jgeot.15.rl.002.
  66. ^ Houlsby, G. T. (2016). "Interactions in Offshore Foundation Design". Géotechnique. 66 (10): 791–825. doi:10.1680/jgeot.15.rl.001.
  67. ^ BGA 54th Rankine Lecture
  68. ^ BGA 55th Rankine Lecture
  69. ^ Jardine, Richard J. (2020). "Geotechnics, energy and climate change: The 56th Rankine Lecture". Géotechnique. 70: 3–59. doi:10.1680/jgeot.18.RL.001. hdl:10044/1/70385.
  70. ^ Hight, David W. (2020). "Introduction for the 56th Rankine Lecture". Géotechnique. 70: 1–2. doi:10.1680/jgeot.18.RL.002.
  71. ^ The 58th Rankine Lecture
  72. ^ BGA 59th Rankine Lecture
  73. ^ BGA 59th Rankine Lecture Flyer
  74. ^ 60th Rankine Lecture
  75. ^ Rearranged date for the 60th Rankine Lecture
  76. ^ Professor John Carter announced as 61st Rankine Lecturer
  77. ^ John Carter to deliver 61st Rankine Lecture on soil constitutive modelling
  78. ^ The 61st Rankine Lecture : Constitutive Modelling in Computational Geomechanics by Professor John Carter of the University of Newcastle, Australia
  79. ^ Professor Lidija Zdravković
  80. ^ Professor Lidija Zdravković announced 62nd Rankine Lecturer