Kohn anomaly

(Redirected from Kohn effect)

In the field of physics concerning condensed matter, a Kohn anomaly (also called the Kohn effect[1]) is an anomaly in the dispersion relation of a phonon branch in a metal. It is named for Walter Kohn. For a specific wavevector, the frequency (and thus the energy) of the associated phonon is considerably lowered, and there is a discontinuity in its derivative. They have been first proposed by Walter Kohn in 1959.[2] In extreme cases (that can happen in low-dimensional materials), the energy of this phonon is zero, meaning that a static distortion of the lattice appears. This is one explanation for charge density waves in solids. The wavevectors at which a Kohn anomaly is possible are the nesting vectors of the Fermi surface, that is vectors that connect a lot of points of the Fermi surface (for a one-dimensional chain of atoms this vector would be ). The electron phonon interaction causes a rigid shift of the Fermi sphere and a failure of the Born-Oppenheimer approximation since the electrons do not follow any more the ionic motion adiabatically.

In the phononic spectrum of a metal, a Kohn anomaly is a discontinuity in the derivative of the dispersion relation that occurs at certain high symmetry points of the first Brillouin zone, produced by the abrupt change in the screening of lattice vibrations by conduction electrons. Kohn anomalies arise together with Friedel oscillations when one considers the Lindhard theory instead of the Thomas–Fermi approximation in order to find an expression for the dielectric function of a homogeneous electron gas. The expression for the real part of the reciprocal space dielectric function obtained following the Lindhard theory includes a logarithmic term that is singular at , where is the Fermi wavevector. Although this singularity is quite small in reciprocal space, if one takes the Fourier transform and passes into real space, the Gibbs phenomenon causes a strong oscillation of in the proximity of the singularity mentioned above. In the context of phonon dispersion relations, these oscillations appear as a vertical tangent in the plot of , called the Kohn anomalies.

Many different systems exhibit Kohn anomalies, including graphene,[3] bulk metals,[4] and many low-dimensional systems (the reason involves the condition , which depends on the topology of the Fermi surface). However, it is important to emphasize that only materials showing metallic behaviour can exhibit a Kohn anomaly, since the model emerges from a homogeneous electron gas approximation.[5][6]

See also edit

References edit

  1. ^ Koenig, Seymour H. (1964-09-14). "Kohn Effect in Na and other Metals". Physical Review. 135 (6A). American Physical Society (APS): A1693–A1695. Bibcode:1964PhRv..135.1693K. doi:10.1103/physrev.135.a1693. ISSN 0031-899X.
  2. ^ Kohn, W. (1959). "Image of the Fermi Surface in the Vibration Spectrum of a Metal". Physical Review Letters. 2 (9): 393–394. Bibcode:1959PhRvL...2..393K. doi:10.1103/PhysRevLett.2.393.
  3. ^ Piscanec, S.; Lazzeri, M.; Mauri, Francesco; Ferrari, A. C.; Robertson, J. (2004-10-28). "Kohn Anomalies and Electron-Phonon Interactions in Graphite". Physical Review Letters. 93 (18): 185503. arXiv:cond-mat/0407164. Bibcode:2004PhRvL..93r5503P. doi:10.1103/physrevlett.93.185503. ISSN 0031-9007. PMID 15525177. S2CID 46372020.
  4. ^ Stewart, Derek A (2008-04-14). "Ab initio investigation of phonon dispersion and anomalies in palladium". New Journal of Physics. 10 (4): 043025. arXiv:cond-mat/0606767. Bibcode:2008NJPh...10d3025S. doi:10.1088/1367-2630/10/4/043025. ISSN 1367-2630.
  5. ^ R. M. Martin, Electronic Structure, Basic Theory and Practical Methods, Cambridge University Press, 2004, ISBN 0-521-78285-6
  6. ^ For experimental results, one can turn to Renker, B.; Rietschel, H.; Pintschovius, L.; Gläser, W.; Brüesch, P.; Kuse, D.; Rice, M. J. (1973-05-28). "Observation of Giant Kohn Anomaly in the One-Dimensional Conductor K2Pt(CN)4Br0.3·3H2O". Physical Review Letters. 30 (22): 1144–1147. Bibcode:1973PhRvL..30.1144R. doi:10.1103/PhysRevLett.30.1144.