Thin plate energy functional

The exact thin plate energy functional (TPEF) for a function is

where and are the principal curvatures of the surface mapping at the point [1][2] This is the surface integral of hence the in the integrand.

Minimizing the exact thin plate energy functional would result in a system of non-linear equations. So in practice, an approximation that results in linear systems of equations is often used.[1][3][4] The approximation is derived by assuming that the gradient of is 0. At any point where the first fundamental form of the surface mapping is the identity matrix and the second fundamental form is

.

We can use the formula for mean curvature [5] to determine that and the formula for Gaussian curvature [5] (where and are the determinants of the second and first fundamental forms, respectively) to determine that Since and [5] the integrand of the exact TPEF equals The expressions we just computed for the mean curvature and Gaussian curvature as functions of partial derivatives of show that the integrand of the exact TPEF is

So the approximate thin plate energy functional is

Rotational invariance edit

 
Rotating (x,y) by theta about z-axis to (X,Y)
 
Original surface with point (x,y)
 
Rotated surface with rotated point (X,Y)

The TPEF is rotationally invariant. This means that if all the points of the surface   are rotated by an angle   about the  -axis, the TPEF at each point   of the surface equals the TPEF of the rotated surface at the rotated   The formula for a rotation by an angle   about the  -axis is

 

(1)

The fact that the   value of the surface at   equals the   value of the rotated surface at the rotated   is expressed mathematically by the equation

 

where   is the inverse rotation, that is,   So   and the chain rule implies

 

(2)

In equation (2),   means     means     means   and   means   Equation (2) and all subsequent equations in this section use non-tensor summation convention, that is, sums are taken over repeated indices in a term even if both indices are subscripts. The chain rule is also needed to differentiate equation (2) since   is actually the composition  

 .

Swapping the index names   and   yields

 

(3)

Expanding the sum for each pair   yields

 

Computing the TPEF for the rotated surface yields

 

(4)

Inserting the coefficients of the rotation matrix   from equation (1) into the right-hand side of equation (4) simplifies it to  

Data fitting edit

The approximate thin plate energy functional can be used to fit B-spline surfaces to scattered 1D data on a 2D grid (for example, digital terrain model data).[6][3] Call the grid points   for   (with   and  ) and the data values   In order to fit a uniform B-spline   to the data, the equation

 

(5)

(where   is the "smoothing parameter") is minimized. Larger values of   result in a smoother surface and smaller values result in a more accurate fit to the data. The following images illustrate the results of fitting a B-spline surface to some terrain data using this method.

The thin plate smoothing spline also minimizes equation (5), but it is much more expensive to compute than a B-spline and not as smooth (it is only   at the "centers" and has unbounded second derivatives there).

References edit

  1. ^ a b Greiner, Günther (1994). "Variational Design and Fairing of Spline Surfaces" (PDF). Eurographics '94. Retrieved January 3, 2016.
  2. ^ Moreton, Henry P. (1992). "Functional Optimization for Fair Surface Design" (PDF). Computer Graphics. Retrieved January 4, 2016.
  3. ^ a b Eck, Matthias (1996). "Automatic reconstruction of B-splines surfaces of arbitrary topological type" (PDF). Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series. Retrieved January 3, 2016.
  4. ^ Halstead, Mark (1993). "Efficient, Fair Interpolation using Catmull-Clark Surfaces" (PDF). Proceedings of the 20th annual conference on Computer graphics and interactive techniques. Retrieved January 4, 2016.
  5. ^ a b c Kreyszig, Erwin (1991). Differential Geometry. Mineola, New York: Dover. pp. 131. ISBN 0-486-66721-9.
  6. ^ Hjelle, Oyvind (2005). "Multilevel Least Squares Approximation of Scattered Data over Binary Triangulations" (PDF). Computing and Visualization in Science. Retrieved January 14, 2016.