# Ambient occlusion

In computer graphics, ambient occlusion attempts to approximate the way light radiates in real life, especially of what are normally considered non-reflective surfaces.

Unlike local methods like Phong shading, ambient occlusion is a global method, meaning the illumination at each point is a function of other geometry in the scene. However, it is a very crude approximation to full global illumination. The soft appearance achieved by ambient occlusion alone is similar to the way an object appears on an overcast day.

## Method of implementation

Ambient occlusion is related to accessibility shading, which determines appearance based on how easy it is for a surface to be touched by various elements (e.g., dirt, light, etc.). It has been popularized in production animation due to its relative simplicity and efficiency. In the industry, ambient occlusion is often referred to as "sky light".[citation needed]

The ambient occlusion shading model has the nice property of offering a better perception of the 3d shape of the displayed objects. This was shown in a paper where the authors report the results of perceptual experiments showing that depth discrimination under diffuse uniform sky lighting is superior to that predicted by a direct lighting model.[1]

The occlusion $A_\bar p$ at a point $\bar p$ on a surface with normal $\hat n$ can be computed by integrating the visibility function over the hemisphere $\Omega$ with respect to projected solid angle:

$A_\bar p = \frac{1}{\pi} \int_{\Omega} V_{\bar p,\hat\omega} (\hat n \cdot \hat\omega ) \, \operatorname{d}\omega$

where $V_{\bar p,\hat\omega}$ is the visibility function at $\bar p$, defined to be zero if $\bar p$ is occluded in the direction $\hat\omega$ and one otherwise, and $\operatorname{d}\omega$ is the infinitesimal solid angle step of the integration variable $\hat\omega$. A variety of techniques are used to approximate this integral in practice: perhaps the most straightforward way is to use the Monte Carlo method by casting rays from the point $\bar p$ and testing for intersection with other scene geometry (i.e., ray casting). Another approach (more suited to hardware acceleration) is to render the view from $\bar p$ by rasterizing black geometry against a white background and taking the (cosine-weighted) average of rasterized fragments. This approach is an example of a "gathering" or "inside-out" approach, whereas other algorithms (such as depth-map ambient occlusion) employ "scattering" or "outside-in" techniques.

In addition to the ambient occlusion value, a "bent normal" vector $\hat{n}_b$ is often generated, which points in the average direction of unoccluded samples. The bent normal can be used to look up incident radiance from an environment map to approximate image-based lighting. However, there are some situations in which the direction of the bent normal is a misrepresentation of the dominant direction of illumination, e.g.,

In this example the bent normal Nb has an unfortunate direction, since it is pointing at an occluded surface.

In this example, light may reach the point p only from the left or right sides, but the bent normal points to the average of those two sources, which is, unfortunately, directly toward the obstruction.

↑Jump back a section

## Awards

In 2010, Hayden Landis, Ken McGaugh and Hilmar Koch were awarded a Scientific and Technical Academy Award for their work on ambient occlusion rendering.[2]

↑Jump back a section

↑Jump back a section

## References

1. ^ Langer, M.S.; H. H. Buelthoff (2000). "Depth discrimination from shading under diffuse lighting". Perception 29 (6): 649–660. doi:10.1068/p3060. PMID 11040949.
2. ^ Oscar 2010: Scientific and Technical Awards, Alt Film Guide, Jan 7, 2010
↑Jump back a section